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ABSTRACT

With the rapid adoption of Internet of Things (IoT) technologies and a growing amount and variety of
sensitive data collected by various IoT systems, the mechanisms commonly used to ensure individual
privacy and security are still insufficient. Numerous security breaches and sensitive data leaks have
become a commonplace. This is mainly due to the fact that traditional security mechanisms can only
restrict access to a given IoT data source, but not what can be done with that data after the access has
been granted. In this thesis, we reimagine the concept of IoT systems design which aims to give users
full control of sensor data generated by their devices, and to provide mechanisms for users to specify and
enforce their privacy and security preferences regarding sensor data collection, processing and sharing.
To achieve these goals, we propose several novel systems that collectively span across several domains:
local, cloud and mobile. For the local domain, we present HomePad, a privacy-aware smart hub for home
environment which allows users to determine how various IoT applications (apps) access and process
sensitive data collected by smart devices, and to block those apps that violate the privacy preferences
specified by the users. To this end, HomePad introduces two key design concepts: (1) a novel dataflow
programming model which makes sensitive data flows within apps explicit, and (2) an element-based app
structure which allows to model any smart home app as a directed graph and automatically verify its data
flows against user-defined privacy policies using Prolog pre...
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Abstract

With the rapid adoption of Internet of Things (IoT) technologies and a growing amount
and variety of sensitive data collected by various IoT systems, the mechanisms commonly
used to ensure individual privacy and security are still insufficient. Numerous security breaches
and sensitive data leaks have become a commonplace. This is mainly due to the fact that tra-
ditional security mechanisms can only restrict access to a given IoT data source, but not what
can be done with that data after the access has been granted. In this thesis, we reimagine the
concept of IoT systems design which aims to give users full control of sensor data generated
by their devices, and to provide mechanisms for users to specify and enforce their privacy and
security preferences regarding sensor data collection, processing and sharing.

To achieve these goals, we propose several novel systems that collectively span across
several domains: local, cloud and mobile. For the local domain, we present HomePad, a
privacy-aware smart hub for home environment which allows users to determine how var-
ious IoT applications (apps) access and process sensitive data collected by smart devices,
and to block those apps that violate the privacy preferences specified by the users. To this
end, HomePad introduces two key design concepts: (1) a novel dataflow programming model
which makes sensitive data flows within apps explicit, and (2) an element-based app structure
which allows to model any smart home app as a directed graph and automatically verify its
data flows against user-defined privacy policies using Prolog predicates. For the cloud do-
main, we propose PatrIoT, a private-by-design IoT platform that extends HomePad’s dataflow
programming model to the cloud. It leverages Intel SGX to prevent unauthorized access to
the sensor data by untrusted cloud providers, and offers homeowners an intuitive security
abstraction named flowwall which allows them to specify easy-to-use policies for control-
ling sensitive sensor data flows within the apps they install. Finally, for the mobile domain,
we propose Flowverine, a system for building privacy-aware mobile apps handling sensitive
IoT data on unmodified Android platforms. Flowverine adapts dataflow programming model
to a much more complex Android programming and runtime environment, and uses aspect-
oriented programming (AOP) for dynamic taint analysis.

Complementary to these three systems, this thesis also proposes additional techniques
for enhancing the security, fault tolerance and reliability of IoT systems based on N-version
programming and software hardening.





Résumé

Avec l’adoption rapide des technologies de l’Internet des objets (IoT) ainsi qu’une quan-
tité et une variété croissantes de données sensibles collectées par divers systèmes IoT, les mé-
canismes utilisés pour garantir la confidentialité et la sécurité individuelle sont encore insuffi-
sants. De nombreuses failles de sécurité et fuites de données sensibles sont devenues monnaie
courante. Cela est principalement dû au fait que les mécanismes de sécurité traditionnels ne
peuvent restreindre l’accès qu’à une source de données IoT spécifique, mais pas à ce qui peut
être fait avec ces données une fois que l’accès a été accordé. Dans cette thèse, nous réinven-
tons le principe de conception de systèmes IoT en visant à donner aux utilisateurs un contrôle
total sur les données générées par les capteurs de leurs appareils, et à fournir des mécanismes
permettant aux utilisateurs de spécifier et d’imposer leurs préférences de confidentialité et de
sécurité concernant la collecte, le traitement et le partage des données de capteurs.

Pour atteindre ces objectifs, nous proposons plusieurs systèmes novateurs qui s’étendent
collectivement sur plusieurs domaines : local, cloud et mobile. Pour le domaine local, nous
proposons HomePad, un hub intelligent, soucieux de la confidentialité, destiné à l’environ-
nement domestique, qui permet aux utilisateurs de déterminer comment les diverses applica-
tions IoT accèdent et traitent les données sensibles collectées par les appareils intelligents,
et de bloquer les applications qui violent les préférences de confidentialité spécifiées par les
utilisateurs. à cette fin, HomePad introduit deux principes de conception clés : (1) un nouveau
modèle de programmation de flux de données qui rend explicite les flux de données sensibles
au sein des applications, et (2) une structure d’application basée sur des éléments qui permet
de modéliser toute application de maison intelligente sous forme d’un graphe dirigé, et vérifie
automatiquement ses flux de données par rapport aux politiques de confidentialité définies par
l’utilisateur à l’aide de prédicats Prolog. Pour le domaine du cloud, nous proposons PatrIoT,
une plateforme IoT privée par conception qui étend au cloud le modèle de programmation de
flux de données de HomePad. PatrIoT exploite Intel SGX pour empêcher l’accès non autorisé
aux données des capteurs par des fournisseurs de cloud non approuvés et offre aux proprié-
taires une abstraction de sécurité intuitive appelée flowwall leur permettant de spécifier des
politiques faciles à utiliser afin de contrôler les flux de données sensibles des capteurs au sein
des applications qu’ils installent. Enfin, pour le domaine mobile, nous proposons Flowverine,
un système de création d’applications mobiles respectueuses de la vie privée traitant des don-
nées IoT sensibles sur des plates-formes Android non modifiées. Flowverine adapte le modèle
de programmation de flux de données à un environnement de programmation et d’exécution
Android beaucoup plus complexe, et utilise la programmation orientée aspect (AOP) pour
l’analyse dynamique de marquage.

En complément de ces trois systèmes, cette thèse propose également des techniques com-
plémentaires pour améliorer la sécurité, la tolérance aux pannes et la fiabilité des systèmes
IoT basés sur la programmation multiversion (NVP) et le durcissement logiciel.





Resumo

Com a rápida adoção de tecnologias de Internet das Coisas (IoT) acompanhado por uma
crescente quantidade e variedade de dados confidenciais recolhidos por vários sistemas de
IoT, verifica-se uma clara insuficiência nos mecanismos tipicamente utilizados para garan-
tir a privacidade e segurança individuais dos utilizadores. De facto, inúmeras violações de
segurança e roubo de dados confidenciais tornaram-se um lugar-comum. Isto deve-se princi-
palmente ao facto de que os mecanismos de segurança tradicionais apenas restringem o acesso
às fontes de dados de IoT, mas não ao que pode ser feito com esses dados após o acesso ter
sido concedido. Nesta tese, nós repensamos a arquitectura de sistemas IoT procurando dar
aos utilizadores o controlo total dos dados gerados pelos sensores dos seus dispositivos e for-
necer mecanismos para que os utilizadores especifiquem as suas preferências de privacidade
e segurança em relação à recolha, processamento e partilha de dados dos sensores.

Para atingir esses objetivos, propomos novos sistemas que abarcam vários domínios: lo-
cal, nuvem e móvel. Para o domínio local, apresentamos o HomePad, um dispositivo inte-
ligente com mecanismos de protecção de privacidade para ambiente doméstico que permite
aos utilizadores determinar como várias aplicações de IoT acedem e processam dados con-
fidenciais e bloquear as aplicações que violam as preferências de privacidade especificadas
pelos utilizadores. Para este fim, o HomePad apresenta dois conceitos-chave: (1) um novo
modelo de programação de fluxo de dados que torna explícito a propagação de dados sen-
síveis dentro das aplicações (2) uma estrutura aplicacional baseada em elementos que per-
mite modelar as aplicações domésticas inteligentes sob a forma de um gráfico direcionado
e verificar automaticamente os seus fluxos de dados em relação às políticas de privacidade
definidas pelo utilizador. Para o domínio da nuvem, propomos o PatrIoT, uma plataforma
IoT privacy-by-design que estende o modelo de programação de fluxo de dados do HomePad
para a nuvem. Este sistema tira partido de Intel SGX para evitar o acesso não autorizado aos
dados de sensores por provedores de nuvem não confiáveis e oferece aos utilizadores uma
abstração de segurança intuitiva chamada flowwall, que permite especificar políticas fáceis de
usar para controlar fluxos de dados sensíveis geradas pelas aplicações. Finalmente, para o
domínio móvel, propomos o Flowverine, um sistema para a construção de aplicações móveis
com reconhecimento de privacidade que manipulam dados IoT confidenciais em plataformas
Android não modificadas. O Flowverine adapta o modelo de programação de fluxo de dados
a uma programação Android, a qual é muito mais complexa, e usa programação orientada a
aspectos (AOP) para análise dinâmica de propagação de informação.

Complementarmente a esses três sistemas, esta tese também propõe técnicas adicionais
para aumentar a segurança, tolerância a falhas e confiabilidade de sistemas IoT com base num
modelo de programação baseada em N versões e no reforço da segurança do software.





Keywords

Keywords
Internet of Things (IoT)

Data privacy

Dataflow programming model

Privacy policy

Private-by-design systems

Mots clés
Internet des Objets (IoT)

Confidentialité des données

Modèle de programmation de flux de données

Politique de confidentialité

Systèmes privés par conception

Palavras-chave
Internet das Coisas (IoT)

Dados privados

Modelo de programação de fluxo de dados

Política de Privacidade

Sistemas privados por design

ix





Acknowledgments

This document is a product of hard work, sleepless nights and many cups of
coffee. All the ideas, insights and results – nothing of these would be possible
without the people, organizations and places I want to mention here. Do note,
however, that if some of the names are missing, this is mainly due to my poor
memory and does not in any way reflect a lack of my gratitude or appreciation.

First of all, I would like to thank my advisors. I was lucky enough to
have several of those. Nuno Santos played an essential role in my PhD and
guided me throughout these years. The amount of effort, patience and energy
he put in this process is fascinating. From the bottom of my heart I thank
him for showing me the right direction and leading me there, for teaching me
everything I know about research, and for always pushing me to strive for the
best. I also would like to thank Ramin Sadre for his continuous help and all the
fruitful and incredibly friendly discussions we had. His precious feedback and
insights helped to shape my research, and made me much more comfortable in
presenting my findings. Next, I would like to thank Peter Van Roy for always
being supportive and encouraging, and showing a genuine interest in my work.
I thank him for all the hard work he did as my PhD program’s coordinator,
for inviting me to collaborate in a LightKone EU project, and for helping me
with my research. Finally, I would like to thank Axel Legay for his continuous
support which was crucial in the last years of my PhD. Without his help this
thesis would be incomplete and hardly even possible.

To all my EMJD-DC, INESC-ID, and UCLouvain colleagues and friends,
especially to Richard Gil Martínez, Shady Issa, Diogo Barradas, Nuno Duarte,

xi



xii

Daniel Porto, David Gureya, Khulan Batbayar, Sana Imtiaz, Muhammad Bi-
lal, Lionel Metongnon, Raziel Carvajal Gómez, Olivier Goletti and Fabien
Duchêne, for all the joyful and insightful conversations, and for the great times
we have spent together.

A special mention to Manuel Bravo Gestoso, Zhongmiao Li, Emmanouil
Dimogerontakis, João Neto, Paolo Laffranchini and Illia Sheremet. These
finest gentlemen truly became part of my extended family and made this jour-
ney full of wonderful memories that I will always cherish. Without their posi-
tive energy, smiles and support, these years would have been so much tougher.

To Portugal and Belgium, and in particular to the beautiful cities of Lisbon
and Brussels, for hosting me and for letting me explore their local cuisine,
culture and natural wonders. From warm Atlantic ocean’s waves and freshly
baked bacalhau, to picturesque canals and fries – all of these will remain in my
memory forever.

To all the people who took care of all the administrative matters at each of
the universities. Special thanks to Vanessa Maons, Sophie Renard and Paula
Barrancos.

Finally and most importantly, I would like to thank my family for support-
ing me throughout this journey. To my parents for raising me and teaching me
everything I know, to my sisters for always cheering me up, to my wife for her
patience, love and support.

This work was supported in part by the Erasmus Mundus Joint Doctorate
in Distributed Computing (EMJD-DC) funded by the Education, Audiovisual
and Culture Executive Agency (EACEA) of the European Commission; the na-
tional funds through Instituto Superior Técnico, Universidade de Lisboa, and
Fundação para a Ciência e Tecnologia (FCT) via the UID/CEC/50021/2013,
SFRH/BSAB/135236/2017 and UIDB/50021/2020 projects; LightKone project
in the European Union Horizon 2020 Framework Program under grant agree-
ment 732505; and a CISCO research grant.

Brussels, August 30, 2021

Igor Zavalyshyn



Contents

List of Figures xvii

List of Tables xix

1 Introduction 1
1.1 IoT privacy and security issues . . . . . . . . . . . . . . . . . 1
1.2 Reasons behind IoT data leaks . . . . . . . . . . . . . . . . . 3
1.3 Private-by-design system requirements . . . . . . . . . . . . . 4
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . 7

2 Dataflow programming model 9
2.1 Element-based app structure . . . . . . . . . . . . . . . . . . 10

2.1.1 Elements . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Functionality of built-in API elements . . . . . . . . . 11
2.1.3 Flow graph . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.4 Untrusted elements . . . . . . . . . . . . . . . . . . . 13
2.1.5 Programming model . . . . . . . . . . . . . . . . . . 14

2.2 Privacy policy specification . . . . . . . . . . . . . . . . . . . 16
2.2.1 Rule syntax . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.2 User interface for policy specification . . . . . . . . . 18

2.3 Application verification . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Flow graph formal modeling . . . . . . . . . . . . . . 19
2.3.2 Information flow tracking . . . . . . . . . . . . . . . 23
2.3.3 Application profiling . . . . . . . . . . . . . . . . . . 24
2.3.4 Policy enforcement . . . . . . . . . . . . . . . . . . . 25

2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 26

xiii



xiv CONTENTS

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 HomePad: a private smart hub 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 App development . . . . . . . . . . . . . . . . . . . . 34
3.2.3 Hub configurations . . . . . . . . . . . . . . . . . . . 35

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Use-case applications . . . . . . . . . . . . . . . . . . 37
3.4.2 Performance evaluation . . . . . . . . . . . . . . . . . 38
3.4.3 Application programming effort . . . . . . . . . . . . 40
3.4.4 Detection of privacy violations . . . . . . . . . . . . . 40
3.4.5 Flexibility of privacy policies . . . . . . . . . . . . . 42

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5.1 Security discussion . . . . . . . . . . . . . . . . . . . 43
3.5.2 Operational considerations . . . . . . . . . . . . . . . 44

3.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 PatrIoT: a private IoT platform 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 System model . . . . . . . . . . . . . . . . . . . . . . 51
4.2.2 Security model . . . . . . . . . . . . . . . . . . . . . 53
4.2.3 Goals and threat model . . . . . . . . . . . . . . . . . 54
4.2.4 TEE-protected smart app runtime . . . . . . . . . . . 55
4.2.5 PatrIoT API . . . . . . . . . . . . . . . . . . . . . . . 57
4.2.6 Flowwall security policies . . . . . . . . . . . . . . . 57
4.2.7 Policy enforcement . . . . . . . . . . . . . . . . . . . 59
4.2.8 Data flow graph model generation . . . . . . . . . . . 62

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4.1 Case study . . . . . . . . . . . . . . . . . . . . . . . 64
4.4.2 Performance . . . . . . . . . . . . . . . . . . . . . . 65
4.4.3 Policy expressiveness . . . . . . . . . . . . . . . . . . 68
4.4.4 Usability . . . . . . . . . . . . . . . . . . . . . . . . 69



CONTENTS xv

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5 Flowverine: private Android apps 75
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1.1 Building privacy-sensitive Android apps . . . . . . . . 77
5.1.2 Element-based programming for Android apps . . . . 77
5.1.3 Challenges related to Android specifics . . . . . . . . 79

5.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.2 Application development . . . . . . . . . . . . . . . . 80
5.2.3 Application execution runtime . . . . . . . . . . . . . 81
5.2.4 Trusted elements API and drivers . . . . . . . . . . . 82
5.2.5 Protection against untrusted element code . . . . . . . 83
5.2.6 Validation of information flow control policies . . . . 85

5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4.1 Case study . . . . . . . . . . . . . . . . . . . . . . . 87
5.4.2 Comparison with legacy Android apps . . . . . . . . . 88
5.4.3 Performance . . . . . . . . . . . . . . . . . . . . . . 89

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.6 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Bootstrapping trust with NVP 95
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2.1 Trusted elements: goods and ills . . . . . . . . . . . . 97
6.2.2 Leveraging N-version programming . . . . . . . . . . 97

6.3 Trusted elements modules . . . . . . . . . . . . . . . . . . . 98
6.3.1 Module lifecycle . . . . . . . . . . . . . . . . . . . . 99
6.3.2 Detection of unit result divergence . . . . . . . . . . . 100
6.3.3 Nondeterministic inputs . . . . . . . . . . . . . . . . 101
6.3.4 Software flaws . . . . . . . . . . . . . . . . . . . . . 102
6.3.5 Module incoherence . . . . . . . . . . . . . . . . . . 103

6.4 Impact of software flaws . . . . . . . . . . . . . . . . . . . . 104
6.4.1 Experimental methodology . . . . . . . . . . . . . . . 104



xvi CONTENTS

6.4.2 Main findings . . . . . . . . . . . . . . . . . . . . . . 106
6.5 Impact of module incoherence . . . . . . . . . . . . . . . . . 108

6.5.1 Face recognition module study . . . . . . . . . . . . . 108
6.5.2 Speech recognition module study . . . . . . . . . . . 110

6.6 Performance evaluation . . . . . . . . . . . . . . . . . . . . . 112
6.6.1 Experimental methodology . . . . . . . . . . . . . . . 113
6.6.2 Main findings . . . . . . . . . . . . . . . . . . . . . . 113

6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.8 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7 IoT software hardening analysis 119
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.2 Case study: PRESENT . . . . . . . . . . . . . . . . . . . . . 120
7.3 Fault injection attacks . . . . . . . . . . . . . . . . . . . . . . 121
7.4 Hardening techniques . . . . . . . . . . . . . . . . . . . . . . 123
7.5 Chaos Duck . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
7.6 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.7.1 Sensitive data leakage . . . . . . . . . . . . . . . . . 128
7.7.2 Fault tolerance . . . . . . . . . . . . . . . . . . . . . 130
7.7.3 Performance analysis . . . . . . . . . . . . . . . . . . 131

7.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
7.9 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8 Analysis and limitations 135
8.1 A trust model of private-by-design systems . . . . . . . . . . 135
8.2 Limitations of private-by-design IoT systems . . . . . . . . . 137

8.2.1 Limitations related to trusted hardware . . . . . . . . 137
8.2.2 Limitations related to trusted software . . . . . . . . . 139
8.2.3 Limitations related to trusted third parties . . . . . . . 141

9 Conclusions and future work 143
9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
9.2 Directions for future work . . . . . . . . . . . . . . . . . . . 145

Bibliography 147



List of Figures

2.1 Object detection element example. . . . . . . . . . . . . . . . . . 11
2.2 Flow graph of AutomaticLight app. . . . . . . . . . . . . . . . . 13
2.3 Flow graph of SecurityAlert app. . . . . . . . . . . . . . . . . . . 14
2.4 Schematic representation of the UI workflow to specify a privacy

policy rule using dataflow model. . . . . . . . . . . . . . . . . . . 18

3.1 HomePad deployment. . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 HomePad hub architecture. . . . . . . . . . . . . . . . . . . . . . 33
3.3 Use case apps’ runtime performace. . . . . . . . . . . . . . . . . 38
3.4 Flow graphs of benign (a) and malicious (b) TidePooler versions. . 41
3.5 Flow graphs of benign (a) and malicious (b) FaceDoor versions. . 41

4.1 System model of a private-by-design IoT platform. . . . . . . . . 52
4.2 Data flows in a smart home scenario with four installed apps. . . . 54
4.3 Components of PatrIoT TSAR. . . . . . . . . . . . . . . . . . . . 56
4.4 Policy example for the scenario in Figure 4.2. . . . . . . . . . . . 57
4.5 Example of a privacy policy rule specified via PatrIoT UI. . . . . . 58
4.6 Data structures operated by the security monitor. . . . . . . . . . 59
4.7 Intermediate data structures for policy evaluation. . . . . . . . . . 61
4.9 Emulated smart home setup. . . . . . . . . . . . . . . . . . . . . 64
4.10 Throughput versus latency evaluation. . . . . . . . . . . . . . . . 66
4.11 PatrIoT app benchmark performance. . . . . . . . . . . . . . . . 67
4.12 Summary of policy evaluation for use-case apps. . . . . . . . . . 68
4.14 Survey results: privacy preferences. . . . . . . . . . . . . . . . . 70
4.15 Survey results: user experience. . . . . . . . . . . . . . . . . . . 71

5.1 Programming models compared. . . . . . . . . . . . . . . . . . . 78
5.2 Flowverine framework components and workflow. . . . . . . . . . 80

xvii



xviii LIST OF FIGURES

5.3 Element graph of ClickCounter app. . . . . . . . . . . . . . . . . 81
5.4 Execution runtime of a ClickCounter application. . . . . . . . . . 82
5.5 App Manager interface views . . . . . . . . . . . . . . . . . . . . 86
5.6 Flowverine HeartBuddy app design. . . . . . . . . . . . . . . . . 87
5.7 Runtime benchmarking tests results. . . . . . . . . . . . . . . . . 91
5.8 Memory usage: traditional apps vs. Flowverine apps. . . . . . . . 91

6.1 N-version trusted element module (with N=3). . . . . . . . . . . . 99
6.2 Image blurring module specification. . . . . . . . . . . . . . . . . 102
6.3 Strict modules performance . . . . . . . . . . . . . . . . . . . . . 113
6.4 Loose modules performance . . . . . . . . . . . . . . . . . . . . 114

7.1 Heart rate monitor operation in normal mode and under attack. . . 120
7.2 Example of a branch instruction fault attack. . . . . . . . . . . . 122

8.1 Trust model of private-by-design IoT systems (pyramid of trust) . 136



List of Tables

3.1 Use case apps’ execution times breakdown. . . . . . . . . . . . . 39
3.2 Privacy policy specification and translation. . . . . . . . . . . . . 42

4.1 Attestation, bootstrap, and app loading times. . . . . . . . . . . . 66

5.1 Apps created for bare Android and with Flowverine. . . . . . . . 89
5.2 Build time for traditional and Flowverine apps. . . . . . . . . . . 90

6.1 Evaluation results of strict modules under total agreement (TA)
and quorum agreement (QA) decision policies with the output de-
fined as correct (3), incorrect (7), or silent (–). . . . . . . . . . . 106

6.2 Success rates of face recognition measured in correct (3), incor-
rect (7) and no recognition. . . . . . . . . . . . . . . . . . . . . . 109

6.3 Speech recognition confidence. . . . . . . . . . . . . . . . . . . . 110
6.4 N-version speech recognition confidence. . . . . . . . . . . . . . 111

7.1 Sensitive data leakage across five hardening techniques. . . . . . . 129
7.2 Fault types statistics for faulted binaries leaking sensitive data. . . 129
7.3 Overall execution results in presence of faults. . . . . . . . . . . . 130
7.4 Statistics on failed executions. . . . . . . . . . . . . . . . . . . . 131
7.5 Runtime performance and file size comparison . . . . . . . . . . . 132

xix





Chapter 1

Introduction

1.1 IoT privacy and security issues

We live in a world in which Internet-connected devices, such as mobile phones,
fitness trackers and smart speakers – all united under the umbrella of Internet of
Things (IoT) – became part of our daily lives. Based on various reports, there
are from 7 to 20 billion of such devices in use worldwide, and their number
keeps on growing exponentially [74, 205, 31].

However, the growing popularity of IoT devices raises concerns over the
sensitive data these devices collect and make freely available to their respectful
manufacturers and IoT service providers. For instance, smart phones collect
sensor data from their built-in sensors and other connected devices (e.g. fitness
trackers) for various installed third-party applications, apps, to use. Location,
health and biometric information, such as physical activity, sleep cycles and
even heart rate and blood pressure can then be harvested and stored at the
remote cloud servers without the user authorization. Similarly, smart speak-
ers use always-on microphones to continuously listen and react to user voice
commands, but at the same time they can be abused to provide a stealthy chan-
nel into private user conversations. Collectively, personal IoT devices have
an unprecedented access to their users’ most personal and extremely sensitive
information, which can be misused in harmful ways.

Unfortunately, these concerns can be grounded on actual security exploits
[73, 170, 132, 211], and on studies that reveal numerous vulnerabilities in com-
modity IoT technologies [96, 139, 236]. From video feeds streamed by smart
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cameras to audio recordings captured by smart speakers, highly sensitive data
can be extracted, processed, and shared without end-users’ awareness or per-
mission. Anecdotal evidence confirms the existence of data abuse, e.g., for
targeted advertisement [92], legal forensic purposes [122], corporate and gov-
ernment surveillance [162], eavesdropping or peeping [7, 2, 73], or of simple
data mishandling [8, 73, 125]. Third-party IoT apps can further frustrate end-
users’ expectations by misusing sensitive data [96].

Although many security breaches in IoT devices and applications are caused
by traditional software vulnerabilities, said concerns about improper data us-
age are structural. IoT platforms like Samsung’s SmartThings or Amazon’s
Alexa act as sinks for all sensitive data collected from smart devices. End-
users are forced to give up control of their data on behalf of IoT platform
providers and third-party application developers, whose goal is to monetize it.
To secure providers’ revenues, internal systems tend to be opaque in terms of
their implementation, operation, and user data handling. End-users are left in
the dark as to the kind, amount, and purpose of data that is collected. As a
result, this “data rush” has created a fragmented IoT market that operates un-
der a privacy-aggressive paradigm which, ironically, has caused, according to
some voices, a slowdown in IoT industry growth [104, 101].

The aforementioned "data rush" has led to numerous cases of unautho-
rized sensor data collection and sharing without user awareness. We refer to
such sensitive data disclosure as a data leak. The causes and consequences
of various data leaks are of primary interest for us, and this relationship has
greatly motivated our research. However, figuring out why a certain data leak
occurred can be complicated, as there can be a range of different causes. One
way of understanding causes and consequences is through categorizing them.
In the next section, we highlight the reasons and the impact of data leaks that
occur in various IoT domains: within third-party applications (both for mobile
platforms, such as Android, and smart home platforms, such as SmartThings),
within the smart home platforms themselves, and, finally, within the IoT de-
vices that may be subject to various security and privacy attacks, for instance,
by interfering with the device software or communication channels.
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1.2 Reasons behind IoT data leaks

There are various reasons behind sensitive data leaks and subsequent violations
of users’ privacy in existing IoT systems. We will now highlight the main
reasons behind data leaks considered in this thesis.

On an application level, we differentiate between data leaks caused by IoT
apps used on mobile devices (e.g. Android-based smartphones) and those apps
that come as part of an IoT platform (e.g. Samsung SmartThings or Amazon
Echo). In case of mobile apps, data leaks may occur when an app developer
intentionally collects and sends out sensitive sensor data without the user con-
sent. Unfortunately, data leaks may also occur accidentally due to the existence
of security vulnerabilities in mobile apps’ code, or by the inclusion of third-
party libraries [40, 235] (e.g., ad libs) designed to harvest sensitive data in
background and send it to untrusted parties. In both cases, permission-based
data access control systems traditionally used in mobile context (e.g. Android
or iOS) are too coarse-grained and fail to prevent such data leaks. Once a per-
mission to access a given data source has been granted, there is no way for the
user to control how sensitive data is later used by the app.

The situation is similar for IoT apps offered by third-party developers for
various IoT platforms. These apps allow the end users to automate some pro-
cesses in their smart homes, e.g., turn on the lights at a certain time of the day,
and to connect various devices and web services together, e.g., send security
camera footage to the user-defined cloud storage. Once installed these apps
usually have direct access to the user sensitive sensor data and are expected
to handle it with care. However, since they are implemented and maintained
by independent third-party developers, the actual application behavior may
deviate from the expected one, leading to potential data leaks. The device
capability-based access control system used by modern IoT platforms (e.g.,
Samsung SmartThings) is not sufficient to prevent such data leaks, and often
results in many apps gaining more privileges than they actually need [96]. As
a result, the users are unable to estimate the risks of installing a given app and
granting it access to sensor data. Similarly to mobile platforms, IoT ones fail
to restrict data sharing and processing capabilities of the installed apps once
the access to a data source has been granted.

On a platform level, the data leaks may as well be intentional or acciden-
tal. The harvested sensor data of the registered users may be intentionally
shared with third-party partners without user awareness. This can be done
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for analytics, e.g. to improve user experience, or for commercial purposes,
e.g. share device usage statistics with device manufacturers or external com-
panies [137, 168, 177]. Accidental data leaks may happen due to platform
configuration errors, improper encryption or due to privilege abuse by the sys-
tem administrators who have direct access to platform infrastructure. The IoT
platform may also become a target of an external attack in which confidential
user data will be exposed. In all of these cases, the end-users are unable to
control where their sensor data resides and who it is shared with, nor they can
enforce any data access restrictions. Moreover, there is no mechanism for the
users to verify the state of the IoT platform and whether or not it can be trusted.

Finally, on a device level, a data leak may occur when sensitive sensor
data is transmitted without proper encryption. In some cases the data encryp-
tion method used by the device software is insecure and can be vulnerable to
differential analysis attack [53, 105]. In other cases, the encryption may not
be used at all, thus allowing any external observer having direct access to the
device to recover raw data samples. Alternatively, even with a proper data
handling mechanism in place the device may still be vulnerable to fault injec-
tion attacks targeting the data encryption procedure [123, 44]. In this case, a
strategically placed fault may disrupt the encryption logic or cause the device
to skip the encryption completely.

To address the mentioned data privacy and security issues, in the next sec-
tion we define the requirements for building private-by-design IoT systems.

1.3 Private-by-design system requirements
In this thesis, we aim to address the concerns of the IoT users by building
systems that offer the following features:

1. A privacy-oriented IoT system that allows the end users to manage
and control the data flows generated by all of their personal IoT devices.
Such a platform must provide a secure environment for data storage and
processing, and offer a protection from external attackers trying to ex-
filtrate sensitive sensor data. The users must remain in full control of
their devices, sensor data and the installed IoT apps. This platform must
be open and independent from any commercial entity and may not be
necessarily compatible with existing IoT platforms, devices and/or apps
that often use obscure data handling techniques.
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2. A way for the users to express and enforce their security and privacy
preferences regarding IoT data collection, processing and sharing. This
has to be done in a user-friendly yet effective way, so that to accommo-
date for various user expectations and perspectives on data privacy.

3. A comprehensive and meaningful report on the collected sensor data
origins, types and whereabouts. The report must contain not only in-
formation about the IoT data collected, but also the processing and shar-
ing capabilities of various third parties requiring access to it (i.e., IoT
apps and services). Such an insight is crucial, since with a clear under-
standing of the granularity and purpose of the data collection the users
can reason about the privacy and security risks they are facing.

4. A mechanism to verify the security and privacy properties of the
IoT system. The end-users must be able to verify the state of the system
before entrusting it with their IoT devices’ data. This will ensure secure
data processing and minimize the risks of data leaks.

1.4 Contributions
The main contributions of this thesis focus on three target platforms – local
hub, for connecting and managing all IoT data flows within a home envi-
ronment, e.g. smart home; cloud, for a secure data flows processing at the
untrusted cloud environment; and, finally, mobile, for on device sensor data
access and sharing control. Below we outline the details of each of these three
contributions, followed by the description of additional techniques that offer
enhancement to these platforms’ robustness and security.

1. A smart hub for privacy-aware data processing. To address the pri-
vacy concerns of the smart home users, we proposed HomePad [231]
– a privacy-aware smart hub for home environments. HomePad aims
to determine how smart home apps access and process sensitive data
collected by smart devices, and to block those apps that try to circum-
vent the privacy restrictions specified by the users. To achieve this goal,
HomePad introduces a novel dataflow programming model and an ap-
plication programming interface (API) for app developers to use. With
this model, the apps are implemented as directed graphs of elements,
with each element representing a special functional unit provided as part
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of a HomePad API. The developers connect these elements together to
build the apps of various complexity. By accurately modeling the be-
havior of the app elements and their interactions, HomePad allows to
automatically verify the app’s dataflow graph against user-defined pri-
vacy policies.

2. A private-by-design IoT platform. We proposed PatrIoT [233] – a sys-
tem that expands HomePad’s sensitive data flow control to the untrusted
cloud environment. PatrIoT revisits the typical architecture of existing
IoT platforms, and provides an alternative design where the end-user
retains full ownership and control of IoT data even in a cross-domain
setting. It leverages Intel SGX to prevent unauthorized access to the
data by cloud providers, and offers home owners an intuitive security
abstraction named flowwall which allows them to specify easy-to-use
policies for controlling sensitive sensor data flows within IoT apps. Pa-
trIoT implements an automatic attestation mechanism which gives users
guarantees that their PatrIoT instance runs in a secure environment, and
that the confidentiality and integrity of sensor data is preserved.

3. A middleware for building privacy-aware Android apps. Mobile
apps often have unrestricted access to highly sensitive information ob-
tained from mobile devices’ sensors, connected wearables or smart home
devices. Thus, providing security mechanisms that prevent data leaks is
very important. To this end, we proposed Flowverine [117] – a mid-
dleware for building secure-by-design privacy-aware mobile apps run-
ning on legacy Android OS. Specifically, it allows developers to write
their apps using the dataflow programming model such that all sensitive
data flows are made explicit. Flowverine uses both static and dynamic
taint analysis techniques to discover and track all the sensitive app data
flows. Developers can specify per-app security policies that white-list
only some explicitly stated sensitive data flows, and the app users can
verify those and employ additional restrictions if needed.

4. A mechanism to bootstrap trust in third-party IoT software. IoT
apps often rely on third-party libraries to perform a certain operation,
e.g. speech recognition or data encryption. However, if a buggy or even
malicious implementations of these libraries are used, serious security
breaches can take place. To address this problem we proposed to use an
N-version Programming (NVP) technique [230]. By using NVP, rather
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than depending on a single library implementation, we utilize N different
implementations (versions) that must concur to produce the final result.
We envision different versions to be developed independently by an open
community of developers. Insofar as the developers do not collude, N-
version-based modules are no longer dependent on the correctness of
any specific library implementation as it is the case for existing IoT apps.

5. A framework to evaluate the fault-tolerance of IoT device software.
The IoT device software handling sensitive data has to be resistant to
faults due to privacy, security and safety reasons. Hardening is a com-
mon way to make software fault-tolerant, but the security and perfor-
mance implications of the selected hardening technique are not always
obvious. To address this problem, we proposed Chaos Duck [232] –
a framework for automatic software fault-tolerance evaluation. Chaos
Duck strategically injects faults in a given software and evaluates their
impact on security and performance. With Chaos Duck we offer an in-
valuable tool for a developer seeking to improve the safety properties of
the developed software, and provide a guideline for selecting a harden-
ing technique which helps to avoid the unexpected security pitfalls.

The source code of HomePad, PatrIoT, Flowverine and Chaos Duck sys-
tems is publicly available and can be found in the corresponding repositories:
[229], [228], [116], [227].

1.5 Structure of this thesis
In the next chapter, we introduce a dataflow programming model which plays
an important role in the design of our proposed systems. Then, in Chapters 3
4 and 5, we describe our contributions to building private-by-design IoT sys-
tems, focusing on local home, cloud and mobile environments respectively. We
cover the design and implementation details of the proposed systems, and pro-
vide the results of a thorough performance and security analysis. We continue
with the description of additional techniques that aim to enhance the security
and privacy properties of these systems in Chapters 6 and 7. Finally, Chap-
ter 8 makes a comparative analysis of all the proposed systems and discusses
their limitations, and Chapter 9 concludes this thesis by summarizing the main
contributions of this work and outlines future research directions.





Chapter 2

Dataflow programming model

Our idea of a private-by-design IoT system is one where the end users retain
exclusive ownership rights over the sensor data generated by their respective
IoT devices: various IoT apps and services can only acquire the access rights
and capabilities that a user will explicitly decide to grant them. This is, how-
ever, in a stark contrast to an approach used by existing IoT systems that rely on
a discretionary access control model in which each app requests permissions
to access a given resource (e.g., a sensor reading). While this model provides
the users with a basic understanding of app intentions (and a way to decline
such requests), permissions fail to capture how the acquired resources will be
actually used by an app, and are difficult to manage as the number of smart
devices and apps grows. As a result, the apps often obtain more permissions
than they actually need to perform a given task (i.e., overprivilege), and may
use this opportunity to leak sensitive sensor data [96].

To address the limitations of existing permission-based systems, we pro-
pose a dataflow programming model. It provides easy-to-use programming
abstractions for IoT developers to build privacy-aware apps or services with
all internal data flows made explicit and easy to analyze. The app is imple-
mented as a directed elements graph, in which elements represent functional
units offered by the system itself (as part of an API) or implemented by the app
developer, and the edges describe the only paths through which data can flow
within an app. With each element having a well-defined specification, both
in terms of interface and expected behavior, such element-based app structure
allows for sound and efficient data flow tracking.

9
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In the following sections we describe the main concepts behind the pro-
posed dataflow programming model, namely, element-based app structure,
sensitive data flows tracking, and a mechanism used to enforce user privacy
and security preferences regarding data collection, processing and sharing.

2.1 Element-based app structure
This section describes how privacy-aware IoT apps can be implemented using
dataflow programming model, and explains how this model achieves effective
sensitive data flows detection and tracking.

2.1.1 Elements
Each element of the app graph has five important properties:

• Element class: Each element has an associated piece of code which
determines its behavior. At runtime, an instance of that code (i.e., a
class object) is initialized for each app element.

• Element ports: An element can have any number of input or output
ports with attached data types. An arrival of a trigger event at any of in-
put ports causes the element’s code to execute and process the incoming
event in a First-In First-Out (FIFO) fashion; at the same time, depending
on the element’s logic, an outgoing event may or may not be fired at the
output port. Elements can optionally have an error port which is used by
the system to output internal exceptions and stack traces. Each port type
is denoted with a different notation and is statically typed.

• Parameter string: Element classes may optionally support parameters
to initialize element’s state and configure its behavior.

• Element rules: An element must be accompanied by Prolog rules that
specify the (abstract) types of data sent as output in response to a given
input, as well as the corresponding input and output ports involved.

• Element state: All elements are stateless. This way sensitive data sam-
ples cannot be aggregated between executions. The absence of state also
helps to maintain the stability of the system: any failed execution of an
element’s code may be restarted safely with the same inputs.
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ObjectDetection
(person)

ImageSample
input port

ObjectDetected
output port

element class parameter

error port

Figure 2.1 – Object detection element example.

Figure 2.1 displays a simple element, named ObjectDetection, which
performs object detection on a series of input images. The ImageSample in-
put port receives a camera frame for analysis, the element’s code runs an object
detection algorithm, and then sends an event with the list of identified objects
on the ObjectDetected output port. This specific element is configured to
only react to a ‘person’ object defined in a parameter string.

Our element notation was inspired by the notation used for programming
the Click modular router [145]. We adapted and extended Click’s notation
accordingly, by adding error ports and output rules.

2.1.2 Functionality of built-in API elements
Dataflow programming model relies on a set of elements provided as part of
an API, which allows for highly flexible app configurations. Some of these
elements provide interfaces to physical devices and actuators, while the others
offer a time-based functionality with timers and schedules. Next, we present
an overview of functionalities provided by some of these elements:

Interaction with sensors and actuators: A crucial functionality is to enable
IoT apps to access sensors (e.g., thermostats, cameras, and microphones) or
actuators (e.g., locks, or light bulbs). The elements of this category act as a
‘device shadow’, mimicking real devices’ interfaces and proxying their events
and commands. While some of these elements can implement low-level func-
tions such as simply reading / writing from / to a device, others can be more
sophisticated. For example, IPCamera element can read data from multiple
devices, know their location(s), and pull camera frames at a predefined rate.

Communication with remote endpoints: Elements can also enable commu-
nication with external entities. An HttpRequest element, for instance, al-
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lows an app to issue HTTP requests to any web service. An OAuth2 element
allows for easy integration with external services using OAuth2 authorization.
There are additional elements for communication with mobile endpoints. A
PushMessage element, for instance, allows to send a push message to any
registered user’s mobile phone, while an SmsMessage element sends a short
text message to a given number.

Data transformation: This class of API elements aims to provide data trans-
formation functionality. Examples include audio / video encoding, data com-
pression or encryption, and data anonymization. The latter is exceptionally
useful when sending sensitive data to external entities.

Computation on sensitive data: These elements provide various data pro-
cessing capabilities, for instance, speech or face recognition, object detection,
and image classification, among others. ObjectDetection element de-
scribed earlier belongs to this category as well. These elements collectively
offer a functionality that app developers would otherwise have to implement
themselves, which can be a challenging task sometimes.

Time-based dataflow control: Some of the API elements allow to intro-
duce time constraints on the app’s execution logic. For instance, with the
TimeController element, the app developers may provide a way for the
user to specify time windows when the app will be active or not. With this
element, for instance, an IP camera app may be allowed to record the video
when the user is not at home (e.g. during the working hours), and denied
to do so otherwise. Alternatively, a RateLimit element provides a way to
specify the maximum rate for data transmissions. Following the IP camera
example, the video stream might be restricted to one frame per second, when
RateLimit element is configured with a ‘1 sec’ parameter. Finally, Timer
and Schedule elements allow an app to perform a given action after a cer-
tain time period or using a pre-defined schedule. Overall, this type of elements
allow for the enforcement of various time-constraining rules by just modifying
the app graph accordingly.

Error handling and debugging: Specific elements can help handle app errors
and debugging, e.g., for sending bug reports to an app provider. To preserve
anonymity, there can be instances of such elements that, in addition to packag-
ing memory dumps or exception related data, can first anonymize that data so
as to prevent exfiltration of sensitive user information.
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Smart
Lightbulbframe object
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Figure 2.2 – Flow graph of AutomaticLight app.

2.1.3 Flow graph

Elements can be coupled together to form a directed graph, which we call
flow graph, as long as their input and output ports are compatible and operate
with the same data types. Two elements can be connected using asynchronous
unidirectional links – in simplex mode – or synchronous bidirectional links –
in duplex mode. A flow graph makes information flow explicit across elements
and can be used to fully describe the data flows inside an IoT app.

Consider, for instance, an element-graph of a simple app named Automati-
cLight showed at Figure 2.2. The app collects camera frames from IPCamera
element (which serves as a proxy to a physical camera device), forwards those
to an ObjectDetection element, which in turn sends a corresponding
event to the SmartLightbulb element that turns on the lights whenever
a person is detected in front of a camera.

To execute this app, a runtime system instantiates each element of the
flow graph as a single object and establishes internal communication chan-
nels responsible for forwarding the messages between these elements accord-
ing to the element connections as specified by the flow graph; no other data
flows are allowed between elements other than those explicitly declared in the
flow graph. Thus, from Figure 2.2 we see that camera frames are produced
by IPCamera, which acts as a data source, and from there flow down to
ObjectDetection element, which acts as a data sink. Then, another data
flow occurs when ObjectDetection element (source) sends an object
detected event to the SmartLightbulb element (sink).

2.1.4 Untrusted elements

Each element implements a specific functional unit and is provided as part of
an API. Since built-in elements are part of the trusted computing base, we call
them trusted elements. At the same time, app developers can also implement
app-specific elements to be shipped along with the app package, which will be
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Figure 2.3 – Flow graph of SecurityAlert app.

incorporated into the app’s flow graph and instantiated at runtime. Since code
of such elements has not been verified and cannot be deemed to be correct, we
call them untrusted elements.

Figure 2.3 illustrates an example of an app that uses both trusted and un-
trusted elements, colored respectively in white and grey. The SecurityAlert
app automatically sends an alert to a security company (e.g., ADT) whenever
a person is detected through the camera installed at the living room. The app’s
flow graph works as follows: camera frame from the IPCamera element
arrives to a ObjectDetection element which in turn sends an object
detected event to the AppCode element when a person is detected.

The AppCode element implements an app-specific logic and is provided
by the app developer. It prepares a payload for an HTTP POST request sent
to a security company through an HTTPRequest element. To enforce proper
protection against buggy or malicious behavior, this element runs inside an
individual sandbox so that to prevent direct access to sensitive data sources
(e.g., camera feed), circumventing pre-defined graph connections.

2.1.5 Programming model

The dataflow programming model for writing IoT apps is rather simple. The
app package essentially consists of a JSON file describing the app’s flow graph,
i.e. a manifest, which declares the names of all the trusted and untrusted ele-
ment instances of the apps’ flow graph and their respective connections, and
a code implementing the logic of the app’s untrusted elements (if any). The
latter can be written in any programming language supported by the runtime.

Interestingly, using this model, one can implement IoT apps without writ-
ing a single line of code by simply arranging compatible trusted API elements.
This is a case, for instance, for AutomaticLight app described earlier. Since its
flow graph does not rely on any untrusted element, its app package consists of
the manifest file only. Listings 2.1 and 2.2 show the manifest files for both Au-
tomaticLight and SecurityAlert apps for comparison, and Listing 2.3 displays
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1 { "name": "AutomaticLight",
2 "elements": [ {
3 "name": "IPCamera", "type": "IPCamera",
4 "config": { "interval": 1000 } }, {
5 "name": "ODetector", "type": "ObjectDetection",
6 "config": { "object": "person" } }, {
7 "name": "SmartLight", "type": "SmartLightbulb" } ],
8 "connections":[ {
9 "from": "IPCamera", "outport": "FramePort",

10 "to": "ODetector", "inport": "SampleImage","mode":"simplex"},{
11 "from": "ODetector", "outport": "ObjectDetected",
12 "to":"SmartLightbulb", "inport":"TurnOnLight","mode":"simplex"
13 }]}

Listing 2.1 – Manifest file of the AutomaticLight app.

1 { "name": "SecurityAlert",
2 "elements": [ {
3 "name": "IPCamera", "type": "IPCamera",
4 "config": { "interval": 1000 } }, {
5 "name": "ODetector", "type": "ObjectDetection",
6 "config": { "object": "person" } }, {
7 "name": "AppCode", "type": "untrusted" }, {
8 "name": "HttpReq", "type": "HttpRequest",
9 "config": { "endpoint": "adt.com" } } ],

10 "connections":[ {
11 "from": "IPCamera", "outport": "FramePort",
12 "to": "ODetector", "inport": "ImageSample","mode":"simplex"},{
13 "from": "ODetector", "outport": "ObjectDetected",
14 "to":"AppCode", "inport":"ObjectDetected","mode":"simplex" },{
15 "from": "AppCode", "outport": "HttpPostPort",
16 "to": "HttpReq", "inport": "HttpPostPort","mode":"simplex"}]}

Listing 2.2 – Manifest file of the SecurityAlert app.

a code sample of the SecurityAlert’s AppCode element written in JavaScript.

Untrusted elements must be written by the developer as independent classes.
In SecurityAlert app, the AppCode element’s code extends the AppElement
class (see Listing 2.3). The App function is the entry point for the events re-
ceived from other elements in the app graph (line 3). The parameters are as fol-
lows: source defines the type of the element that generated the incoming event;
event object holds the type and value of the event; and portType specifies the
port type on which the event was received. For elements with multiple input
ports, the latter parameter is essential to determine the execution logic. After
receiving a new object event, the AppCode element prepares a payload for an
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1 class AppCode extends AppElement {
2 constructor() { super(); }
3 App(source,event,portType) {
4 let payload = JSON.stringify({person: event.value};
5 let headers = {’Content-Type’: ’application/json’,
6 ’Authorization’: ’Bearer BQCw82jABt’};
7 port.HttpPostPort.call(payload,headers) }
8 }
9 module.exports = AppCode;

Listing 2.3 – Implementation of AppCode element of the SecurityAlert app.

HTTP POST request (line 4) and declares the headers for the request, which
include the payload type (line 5) and an authorization token (line 6). On line 7
the App calls a function which sends a new event on an HttpPostPort port
with the specified payload and headers parameters. The URL for this request
is specified in the manifest file as the HttpRequest element’s config.

2.2 Privacy policy specification
Both AutomaticLight and SecurityAlert apps use IP camera feed to detect ob-
jects and then act upon those. The AutomaticLight app uses this information
to control the lights at home, while the SecurityAlert app sends an alert to a se-
curity company. Both these apps require access to a sensitive data source, i.e.,
IP camera, but only one of them has access to network resources. Unlike Au-
tomaticLight app which retains all the data flows within the perimeter of home
environment, the data flows of SecurityAlert app are more concerning since
they extend to a remote third-party cloud service. While the SecurityAlert app
may come from a legitimate source and a respected developer, the end users
might still want to verify that this app cannot potentially leak raw camera im-
ages to a security company, and by doing so, violate their privacy.

To prevent such data leaks, the users can define a privacy policy consisting
of a set of rules that specify disallowed or allowed app flows of specific data
types (e.g., a camera frame) from specific data sources (e.g., IP camera) to
specific destinations (e.g., Internet). These rules are evaluated sequentially
and applied atomically by the app runtime. Any app flows violating the rules
defined in the privacy policy will result in the whole app being blocked.

Next, we describe the privacy policy rules’ syntax, and present a user in-
terface (UI) to specify these rules in an easy-to-understand, yet efficient way.
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2.2.1 Rule syntax
To characterize app flows and to easily specify policies for blocking or allow-
ing them, dataflow model operates with certain objects named endpoints that
the apps may access to perform a given function. Endpoints represent system
resources that can act as producers (i.e. data sources) or as consumers (i.e.
data sinks) of sensor data. Each endpoint fits into one of three classes:

• IoT endpoint: Represents a particular IoT device or device type, e.g.,
IP camera. Each device type can generate specific types of sensor data,
e.g., Video or Image data types. Concretely, each deployed IP cam-
era is represented by an IoT endpoint featuring its own ID and an alias
assigned by the end user, e.g., LivRoomCam for the living room cam.

• Mobile endpoint: Represents a mobile device used to interact with the
system. It is identified by the phone number or other attributes, e.g., the
IMEI, and has a user-defined alias such as MyPhone.

• Web endpoint: Represents an Internet location in the form of HTTPS
URL patterns. For authenticated web services based on OAuth2, the
end user’s credentials must also be provided. Web endpoints can be
labeled with aliases, e.g., ADT to indicate any host under the domain
www.adt.com, or with a general Internet wildcard to denote any
potential web endpoint.

A data flow can then be defined by the transfer of a specific sensor data
type between source and sink endpoints. Following this definition, the format
of a privacy policy rule can be expressed as follows:

allow | block 〈data type list〉 from 〈source endpoint list〉
to 〈sink endpoint list〉 [at 〈time period list〉]

The “allow” or “block” keywords indicate the rule type, i.e., whether the rule
allows or blocks the data flows matched by the rule, respectively. The data type
list indicates one or multiple comma separated types of data to be matched.
They can be simple types, e.g., Image, or the wildcard Everything to in-
dicate all possible simple types. The keywords “from” and “to” are followed by
a list of source and sink endpoints, respectively, which may specify individual
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Figure 2.4 – Schematic representation of the UI workflow to specify a privacy
policy rule using dataflow model.

endpoints, e.g., LivRoomCam, and/or include wildcards, such as Anywhere
for all valid endpoints, and driver-specific terms, e.g., IPCamera to refer to
all IP camera endpoints. Optionally, it is possible to specify time restrictions
by using the keyword “at” followed by a time period, e.g., “12:00-14:00”, and
days of the week.

Taking the SecurityAlert app as an example, the end user’s concern regard-
ing the apps’ access to both camera and web endpoints could be expressed as
the following ‘block’ policy rule:

block Image from IPCamera to Internet

With this rule, app flows carrying camera frames (of Image type) from
any connected camera to any web endpoint will be blocked. Furthermore,
additional rules could be provided to restrict app activity even more (if needed).
Having defined the privacy policy rule syntax, we will now describe how such
rules can be specified by the end users in a simple and effective way.

2.2.2 User interface for policy specification
Manually specifying policy rules using the syntax presented above can be cum-
bersome for untrained users. To help with this procedure, our dataflow model
exposes a simple UI that guides the user along a five step process (see Fig-
ure 2.4) which helps the user to reason in terms of privacy-sensitive/insensitive
data flows he intends to allow/block.
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To create a new rule, the user starts by selecting the rule type, i.e., “al-
low” or “block” (1). Then, he picks the source endpoint (2), tells what data
types from that source he wants to allow or block (3), indicates the sink end-
point (4), and optionally provides a temporal restriction for the rule (5). To
avoid overwhelming the user with too much information, in step 2, the system
only displays existing valid source endpoints. Once the user selects the source
endpoint (3), only the data types that can be generated by that endpoint are
showed. Similarly, in step 4, only valid known sink endpoints are displayed.
In a separate UI view, the user can manage the privacy policy: list all rules,
change their order, modify them, or delete them.

More sophisticated policies, e.g., based on particular device state or certain
data values, can be supported but must be carefully conceived as they may
increase the complexity of the UI. In general, we believe that a good UI must be
simple and provide a limited set of default configuration options, so as to avoid
the negative effects of decision fatigue among the end users [95, 102, 94]. Any
advanced settings could be offered to all experienced users in separate views.

2.3 Application verification

To enforce a privacy policy the dataflow programming model implements an
app verification algorithm which decides whether or not the internal app data
flows violate the policy rules. The verification is performed by first creating
a model of the app flow graph in Prolog (named flow graph model), and then
issuing a set of queries to determine the existence of illegitimate data flows.
We consider a data flow to be illegitimate if it violates any of the policy rules.
Next, we explain how the flow graph model is generated, and describe the
verification process in details.

2.3.1 Flow graph formal modeling

To create a flow graph model of a given app, we need to analyze its flow graph.
During this analysis, we generate a set of Prolog facts and rules describing the
elements the app depends on, their functions, connections, and the data types
they operate with. These facts and rules will then be used to identify and verify
all the app’s data flows.

The generation of the model entails three steps:
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1 el(ipcamera).
2 el(odetector).
3 el(appcode).
4 el(httprequest).
5 con(ipcamera,cameraframe,odetector,sampleimage).
6 con(odetector,odetected,appcode,odetected).
7 con(appcode,httppost,httprequest,httppost).

Listing 2.4 – SecurityAlert app’s flow graph facts (elements & connections).

1. Model the flow graph structure: We begin to model the flow graph of an
app by generating a set of facts in Prolog that declare the elements and their
connections. The general format is represented by facts (2.1) and (2.2):

el(X). (2.1)

con(X, Pout, Y , Pin). (2.2)

Fact (2.1) declares X to be an element of the graph, and fact (2.2) declares
a connection from X element’s output port Pout to Y element’s input port Pin.
Following this logic, the SecurityAlert app’s graph (see Figure 2.3) can be
described with four elements and three connections, as shown at Listing 2.4.

2. Model the elements’ attributes and their types: Each element oper-
ates on and/or generates a unique set of data attributes. For instance, an
IPCamera element generates a frame attribute of Image type, and the
ObjectDetection element receives this frame and generates an object
attribute of Boolean type (i.e., a person is either detected or not). Each el-
ement’s port is associated with a certain attribute it supports. So, IPCamera
element’s CameraFrame port is associated with a frame attribute. Hav-
ing this ‘port-attribute-type’ relation helps to achieve two goals: verify the
correctness of graph connections (i.e., only compatible elements’ ports can
be connected), and track specific data attributes propagation between the con-
nected app elements. Facts describing the element’s supported attributes and
their types, as well as corresponding ports, are expressed as follows:

attr(X, Y). (2.3)
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1 attr(frame,ipcamera).
2 attr(object,odetector).
3 attrtype(frame,image).
4 attrtype(object,boolean).
5 portattrtype([],[image],cameraframe,ipcamera).
6 portattrtype([],[boolean],odetected,odetector).
7 portattrtype(any,any,httppost,httprequest).

Listing 2.5 – SecurityAlert app’s flow graph facts (attributes & types).

attrtype(X, T). (2.4)

portattrtype(Tin, Tout, P, Y). (2.5)

Fact (2.3) declares that element Y can generate an attribute X. Fact (2.4)
specifies the type T of that X attribute. Finally, fact (2.5) declares that port P
of the Y element can only receive attributes of type Tin on its input and may
output the attributes of type Tout.

Listing 2.5 shows attribute facts for the SecurityAlert app. Both object
and frame attributes, as well as their corresponding types (Boolean and Im-
age) are declared. Then follow the facts describing the supported attribute
types for all the elements’ ports used in the flow graph: a odetected port
of the ObjectDetection element (named odetector for brevity), and
a cameraframe port of IPCamera element. A fact describing httppost
port of HttpRequest element contains ‘any’ wildcard and can thus re-
ceive any type of attributes. This is due to the nature of an HTTP request
which can carry virtually any payload. In our case this means that any data
attribute can be received and sent by the HttpRequest element.

3. Model the behavior of trusted elements: The next step is to model how
each element generates its outputs. Typically, an output is a function of the
element’s inputs and / or of the element’s internal behavior. Since this function
is dependent on the specific implementation of the element, to model element
behavior, it is required that each element is associated with its correspond-
ing Prolog rules termed element rules. These rules express how the element
outputs are produced and the possible dependencies of these outputs from the
element inputs. When creating a flow graph model, the rules of all the app
elements are retrieved and added to the model. In general, element rules take
the following form:
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1 out(ipcamera,cameraframe,frame,_).
2
3 out(odetector,odetected,object,true) :-
4 in(odetector,imagesample,frame,_).
5
6 out(odetector,odetected,object,false) :-
7 in(odetector,imagesample,frame,_).

Listing 2.6 – Output rules of SecurityAlert app’s trusted elements.

out(X, Pout, Aout, Vout) :- in(X, Pin, Ain, Vin). (2.6)

This rule states that the output data attribute of element X on port Pout is
defined as Aout with value Vout and depends on the input data attribute Ain

with value Vin received on Pin input port. Informally, rule (2.6) indicates that
an element will produce a declared output as long as a given input is provided.
The more formal declarative interpretation of this Prolog clause is: “An output
Aout is produced from element X, if an input Ain reaches that element”. Note,
however, that each element may have a variant of this rule, or may even require
more than a single rule. Some elements might not depend on any input and
only generate output events (e.g. IPCamera).

Listing 2.6 features the output rules for SecurityAlert app’s trusted ele-
ments. The IPCamera’s out rule indicates the port (cameraframe), at-
tribute (frame) and a value of that attribute ( _ ) returned by the element.
We use an anonymous Prolog variable ‘_’ to denote any value of the camera
frame, since the exact value is irrelevant for flow modeling in this specific case.
In the ObjectDetection element, since two outputs are possible (with true
or false values), it is necessary to specify two rules, one for each output. The
element HttpRequest is omitted in the table. Since it has no output ports
there is no need for any specific rules.

3. Model the behavior of untrusted elements: Just like in the case of trusted
elements, untrusted elements must also be accompanied by Prolog rules that
characterize the element’s output data types. However, the app programmer
cannot be relied upon to write these rules. To this end, we define a common
rule for all untrusted elements. We take a conservative approach in modeling
such elements by assuming that an untrusted element will try to forward all
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input data to the output ports in an attempt to leak as much data as possible.
Thus, we can model an untrusted element using two generalized rules:

untrusted(X). (2.7)

out(X, _, Y , Z ) :- untrusted(X), in(X, _, Y , Z). (2.8)

Rule (2.7) declares a specific element X as “untrusted”. Rule (2.8) then
says that if an element X is untrusted then all its input attributes Y and their
corresponding values Z received on any input port can be forwarded to any
of its outputs. In case of SecurityAlert app, the AppCode element would be
declared as untrusted and its outputs will be modeled using (2.8) rule.

4. Model the connection behavior: Now that the structure of the flow graph
and the behavior of each element has been modeled, the last missing piece
is to model the behavior of the graph’s connections, which are responsible
for propagating the outputs of upstream elements to the inputs of downstream
elements. To model this behavior, we add rule (2.9):

in(X, Pin, Y , V) :- con(Z, Pout, X,Pin), out(Z, Pout, Y , V). (2.9)

This rule can be read as follows: if an element Z outputs a data attribute Y
with a value V on its output port Pout, and there exists a connection between Z
and another element X using corresponding Pout and Pin ports, then X receives
attribute Y as input on its input port Pin.

With rule (2.9) the behavior of the flow graph is now completely speci-
fied. It is then possible to proceed with the automatic data flows tracking and
verification against the user-defined privacy policy rules as explained next.

2.3.2 Information flow tracking
Based on the app model, it is possible to determine all possible data flows
within that app. A data attribute is originally created at a source element and
can be propagated through a chain of interconnected elements until it may



24 CHAPTER 2. DATAFLOW PROGRAMMING MODEL

1 ?- flows(ipcamera,frame,odetector).
2 true.
3 ?- flows(ipcamera,frame,httprequest).
4 false.

Listing 2.7 – Query results for SecurityAlert app.

potentially reach a sink element. Thus, determining if data attribute Y flows
between any given source and sink endpoints – X and Z, respectively – can be
laid as the problem of checking if that attribute Y can be observed as an input
to Z. This problem can be formulated by the following rule:

flows(X,Y ,Z) :- el(X), el(Z), attr(Y , X), in(Z,_,Y ,_). (2.10)

By issuing this query to a first-order logic engine, existing solutions will be
found by unifying it against the topology and the predicates of the app’s flow
graph model. If there is a sequence of interconnected nodes that propagate
a data attribute from X to Z, a result will be found and assigned to Y . The
verification engine uses this technique to automatically query all the possible
‘source-attribute-sink’ triplets of the app graph. The results can be used for
two main purposes: application profiling and policy enforcement.

2.3.3 Application profiling
Application profiling allows the user to analyze the flow graph of an app and
learn how the information can flow within it by determining, (1) what kind
of information can be accessed by the app, (2) where this information can be
obtained from, and (3) where this information can propagate to. The flows
rule is used for this purpose. For example, considering the SecurityAlert
app, in order to determine if raw camera frames from IPCamera can reach
ObjectDetection and HttpRequest elements, we can issue two flows
queries as shown at Listing 2.7.

The results of these queries state that raw camera frames can arrive at the
ObjectDetection element (line 2), but not to the HttpRequest element
(line 4). Looking at the graph of SecurityAlert app (see Figure 2.3) we can
confirm that: only object detection events returned by ObjectDetection
element can arrive to HttpRequest element.
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Using this simple technique the Prolog engine can automatically query the
app model and determine if any of the sensitive data attributes can arrive to a
given element. The results are returned back to the user in a form of a report
listing all the devices and their corresponding data attributes the app has access
to, and how those propagate inside the app flow graph. Such information is es-
sential when evaluating the privacy properties of a given app, since it allows
to determine the app’s data access, processing and sharing capabilities with-
out relying on developer-provided and potentially inaccurate app description.
The very same information helps the user to understand the potential risks of
installing a given app and whether sensitive data access requests are justified.

2.3.4 Policy enforcement
While application profiling allows to generate “privacy reports” of various
apps, policy assessment aims to ensure that an app can be installed only if
it respects the privacy rules specified in a privacy policy. This process is com-
pletely automated and allows the users to define their privacy policy once and
then enforce it on all the apps already installed or those installed in the future.

The enforcement algorithm is similar to the one used for app profiling. The
verification engine checks all the possible combinations of app elements pairs,
and for each pair executes the flows query on the app flow graph. Each discov-
ered flow is represented by its corresponding ‘source-attribute-sink’ triplet.
Each of these triplets are then matched against every rule defined in the pri-
vacy policy sequentially. If at least one triplet is in conflict with any of the
policy rules, the app installation is halted.

The policy rules are evaluated dynamically at runtime and can be modified
by the user at any time. When new rules are added, all the currently installed
apps are re-evaluated and enabled or disabled based on the evaluation results.
Such a dynamic approach allows to enforce new privacy preferences immedi-
ately regardless of the previously authorized app permissions. This is useful in
cases when new devices are added, or when external events prompt a stricter
privacy control, e.g., newborn in a family. To illustrate the latter, below we
provide examples of the privacy policy rules that can be specified by the user:

block Frame from BabyMonitor to Internet. (2.11)

block Motion from MotionSensor to SmartLight, except( at(17,23)). (2.12)
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block State from SmartLight to SMSMessage. (2.13)

The policy (2.11) addresses the concerns of young parents fearing that
camera frames from their baby monitor may be secretly sent to the Internet
by some of the installed apps. The policy (2.12) describes a device-to-device
data flow and blocks the motion sensor events from triggering a smart light
when the user is not at home, but allows that flow otherwise (from 5 till 11pm).
Finally, the policy (2.13) blocks frequent smart light state change events from
being sent via SMS notifications, which allows to reduce operational costs and
save available resources for important events, e.g., smoke alerts. With this rule,
any app attempting to send such events through SMS message will be blocked.

2.4 Related Work
The concept of dataflow programming has been known for a while and dates
back to the 1970s [81, 82, 146, 108]. Initially, it was proposed as a way to
improve the performance of computer systems and take advantage of their in-
creasing parallelism. Conventional imperative programming languages were
not suitable for this task due to their inherited side effects and memory lo-
cality problems. Hence, a novel dataflow programming model was proposed
in which a program was represented as a directed graph. The nodes of such
graphs implemented primitive arithmetic operations, and edges acting as FIFO
queues defined how the data flowed between the nodes [35, 79]. A new in-
put activated the graph and triggered the execution of the nodes that receive
this input, compute on it, and forward the results to their immediate neighbor
nodes (if any). Each node was stateless and behaved independently, and thus
could process any subsequent input immediately after the current one. In fact,
this was a key advantage of the dataflow programming model as compared to
the conventional programming models, since it allowed for several nodes to
operate in parallel without waiting for each other to finish. While we apply
dataflow programming in a different context and with different goals, we still
rely on the same properties of the dataflow graph, e.g., stateless nodes and
FIFO edges.

Graphs have also been successfully used to represent the data access rights
propagation in secure languages and systems. Spiessens et al. [133, 203, 204],
for instance, defined a SCOLL language to model authority propagation in
complex capability-based systems as a graph of interacting entities, and pro-
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posed a constraint solver SCOLLAR to determine any potential security vi-
olations. Their approach allows to verify if the safety requirements can be
guaranteed given a certain set of capabilities of the partially trusted entities,
and provides insights into building provably secure and safe systems. The
graph-based representation of the authority propagation is essentially the same
as the dataflow graph in our model: the capabilities of a subject in an access
graph closely resemble the capabilities of the app developer available through
elements in the dataflow graph. In our programming model we too seek to ver-
ify whether a given entity, be it an app developer or a platform provider, can
obtain a capability that will allow it to violate user privacy or security prefer-
ences. Our work serves as an extension of Spiessens et al. contributions and
goes beyond capability-based verification, allowing, among other things, to
reason about the exact nature and context of data flows that occur in a system.

There’s also a considerable amount of work in the field of formal verifica-
tion [160, 61, 147, 33]. Deshotels et al. [83] use Prolog to model the policies of
iOS container sandbox profiles and discover vulnerabilities in them. Still, this
solution does not directly address our problem as that although it uses Prolog,
it has a broader focus on assessing security rather than privacy properties.

Various software verification techniques have been proposed and used for
quite some time [188, 191, 128, 120, 87]. State-based model checking meth-
ods, for instance, allow to verify the safety properties of a given software by
checking all the possible states it can reach. Although these methods can pro-
vide high precision, their main shortcoming is a so-called state-space explo-
sion – an exponential growth of system states which often makes a model
checking ineffective. In our dataflow programming model we leverage some
model checking ideas but operate with data operations instead of application
states in order to fully model any IoT app. This allows to improve the veri-
fication performance dramatically and overall makes the model checking ap-
proach more practical. Furthermore, while classic model checking techniques
are more suitable for control-flow analysis, our approach allows us to perform
sophisticated and precise data-flow analysis, which is essential for user privacy
and security guarantees.
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2.5 Summary
In this chapter, we have presented the key concepts of the dataflow program-
ming model used to build privacy-aware IoT apps. These concepts will guide
the reader through the rest of this thesis, where we explain how they can be
applied in real-life scenarios.

IoT systems often deal with highly-sensitive sensor data which when ex-
posed to unauthorized parties can cause serious harm to the end users’ privacy.
Traditionally, permission-based access control systems have been used to re-
strict various apps’ access to specific devices and their corresponding sensor
data. However, permissions alone do not offer the desired privacy and security
guarantees, as they only restrict access to a given device, but not the data pro-
cessing and sharing capabilities of the app after the access has been granted.
As a result, numerous apps end up gaining more permissions than they actu-
ally need to perform a given task, and often have unrestricted network access
which allows them to leak sensitive data undetected.

To address the issues of permission-based IoT systems, we proposed an
alternative clean-slate approach to building IoT systems. It is based on the
dataflow programming model which provides a set of important features for
ensuring sensor data privacy and security. Following this model, each app
is represented as a directed graph of elements, with each element having well-
defined behavior and data processing capabilities. Such an app structure allows
for sound and efficient data flow tracking within the app. Combined with the
mechanism for the end users to specify their privacy and security preferences
regarding sensor data collection and sharing, this model allows to automati-
cally assess the privacy properties of the IoT apps, and enable or block those
based on their compatibility with the policy rules.

In the next chapters we will describe the design and implementation de-
tails of the IoT systems built using the dataflow programming model. We will
analyze their performance and compare them to state-of-the-art solutions, as
well as point out their strengths and weaknesses.



Chapter 3

HomePad: a private smart hub

3.1 Introduction
One of the biggest barriers to the widespread adoption of smart home technol-
ogy involves concerns over user privacy. Today, smart home platforms such
as Samsung SmartThings [21], Apple HomeKit [9] or Amazon Alexa [5] rely
on a cloud-first approach, in which numerous connected devices, from smart
lights and locks to thermostats and cameras, constantly stream sensor data
to platforms’ cloud servers for further processing, backup, and visualization.
Ironically, however, the owners of these devices and consequently the users of
aforementioned platforms have little to no control over how much and what
kind of data is being collected or who it is being shared with, and rarely have
a clear understanding of why this data is collected in a first place.

Moreover, the terms of use of smart home platforms tend to be extremely
aggressive, forcing the end users to grant those platforms a lifetime and ir-
revocable, royalty-free license to use, share, display, and otherwise fully ex-
ploit the connected devices’ data and user actions. In practice, this means that
users have to yield full control of their data if they want to benefit from the
desired services. However, such an aggressive approach is in conflict with
the end users expectations and views on their data privacy. In fact, a recent
study [213] reported that 87% of US consumers “are concerned about their
personal information being collected and used in ways they were unaware of”;
27% mentioned this concern as the “main reason they do not currently own
a smart device”. Unfortunately, such fears are all too well justified, backed
up by anecdotal cases of stealthy data theft [99, 106, 73] or undisclosed data
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sharing [93, 159] by IoT providers. Such fears end up hindering not only the
sales of smart devices but also undermining consumers’ trust in smart home
technology. Smart home platforms also face increasing pressure from many
countries to uphold strict personal data handling policies. Notably in Europe,
since May 2018, the GDPR regulations [10] require service providers to pay
formidable penalty fees in case of personal data misuse or user privacy viola-
tions. However, their common practice of aggressively collecting raw sensor
data and shipping it down to their cloud servers can only increase such risks.

To address the privacy concerns of existing and future IoT consumers, we
propose to shift the control of smart devices from the platform provider to the
end users, so as to offer greater transparency and control over how their data is
collected and used. To this end, we present HomePad – a privacy-aware smart
hub for home environment, which extends the architecture of smart home plat-
forms with the ability to process IoT device data and execute various third-
party IoT apps at the edge. HomePad implements a trusted hub device de-
ployed at home that manages connected smart devices and installed apps lo-
cally without necessarily depending on a service provider’s centralized cloud
services. As a result, whenever the functionality of an app does not strictly
require the shipment of data to the cloud, the sensor data can be collected and
processed locally, therefore reducing the risks of data exposure and misuse at
the platform provider’s backend.

HomePad apps follow a dataflow programming model described in Chap-
ter 2 and can be implemented as directed graphs of elements provided as part
of a HomePad API. Using these elements HomePad apps can perform numer-
ous operations, e.g., interact with various sensors and actuators, make network
calls, and perform various computations on sensor data (e.g., speech or face
recognition, voice synthesis, or data anonymization). Furthermore, following
the dataflow programming model HomePad provides a mechanism that allows
users to easily examine whether a given app has the ability to violate specific
privacy concerns expressed in a user-defined policy. This verification is per-
formed at install time so that the users can refuse to install the app if it violates
their privacy expectations.

Threat model: From a privacy perspective, HomePad aims to make users
aware of how their sensor data is accessed and processed by the apps, and
eventually prevent the installation of apps that the users deem to be too privacy-
invasive. Therefore, our main adversary consists of potentially buggy or mali-
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Figure 3.1 – HomePad deployment.

cious apps aiming to extract privacy-sensitive information from home sensors.
An app may try to attain this goal by leveraging legitimate operations pro-
vided by the HomePad API. However, we assume that the hub platform itself
is part of the trusted computing base. In particular, we do not focus on attacks
which try to exploit bugs in the hub software or hardware, or attacks aimed
at leveraging existing vulnerabilities in the smart devices themselves. We as-
sume that the hub hardware is correct, that the software that implements the
hub system is correct, and that potential software updates to the hub have been
implemented and signed by trustworthy entities. We focus only on attacks that
aim to exfiltrate sensitive data extracted from smart devices connected to the
hub. Consequently, we do not prevent privacy breaches from rogue devices
deployed at home that can connect to the Internet bypassing our hub.

3.2 Design

We designed HomePad with an idea that smart home users should be able to
manage their devices and benefit from various third-party apps without neces-
sarily depending on centralized smart home platforms and their underlying in-
frastructure. Instead, there is a locally deployed HomePad hub through which
the users can control their devices directly and manage their installed apps.
Such an approach not only allows to reduce the network latency, but also pro-
vides better user privacy protection since sensitive sensor data is being col-
lected, processed and acted upon entirely within the home perimeter.

Figure 3.1 shows a HomePad deployment in a home environment. Home-
Pad consists essentially of a smart hub that controls access to all smart devices
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at home and provides a platform for the execution of various IoT apps, called
home apps. The HomePad hub provides an administration interface through
which the homeowner can access the hub directly or tunneled through a proxy
and manage it, e.g., to install apps, register new smart devices, install hub soft-
ware extensions, or set up privacy policies.

Figure 3.1 also features a simple home app – TellWeather – installed at the
hub, which listens for an audio command (e.g., “Tell weather in LA”), issues an
HTTP request to a weather service, converts the response into audio signal, and
forwards it to a speaker. All HomePad apps follow a dataflow programming
model and are built by combining elements offered as part of the HomePad
API or provided by the app developers. Due to their element-based structure
HomePad apps have all of their internal data flows and data transformations
made explicit and subject to evaluation based on their compliance with the
user-defined privacy policy rules. The results of this evaluation determine if a
given app is allowed to be executed at the hub or not.

3.2.1 Architecture

HomePad’s architecture internally relies on several involved parties:

• Users interact with home apps and control their devices via HomePad’s
management interface.

• The hub administrator (typically the homeowner) maintains the hub,
e.g., by installing apps and elements, setting up privacy policies.

• App developers create HomePad apps, which involves writing a mani-
fest file specifying the app flow graph, supplying the code of untrusted
elements (if any), and assembling the app package.

• Element developers implement new trusted elements for app develop-
ers to use in their apps. For each element they must write the element
code, a Prolog rule describing element’s input and output data types, and
potentially a driver to be installed on the hub.

• Platform developers write and maintain the code of the HomePad core
system installed in the hub. To this end, we envision HomePad’s core
code to be maintained by a trustworthy code maintainer, which can be a
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Figure 3.2 – HomePad hub architecture.

single reputable entity or a consortium, and released open source to help
detect potential code vulnerabilities.

Figure 3.2 represents the main software components of the HomePad sys-
tem running on the hub. The model checker manages a repository of Prolog
rules and exposes a management interface to allow for privacy verification of
apps. This repository contains: the output rules of elements installed in the sys-
tem, the flow graph models of all apps installed in the system, and the privacy
rules defined by the hub administrator. Before installing an application, the
administrator can upload the flow graph of the app to the system, and check if
it is compliant with the privacy policy. If not, the installation aborts, otherwise,
the app package is deployed into the system.

The configuration manager maintains the state of all the installed apps, of-
fers a management interface to the hub administrator, and supervises the apps’
execution lifecycle. When a home app is installed on the hub, the configu-
ration manager instantiates element objects on the kernel runtime and sets up
connections between instances so as to reflect the flow graph specified in the
app package. Each element object can interact with a local driver which serves
the specific requests of that particular element. As for untrusted elements, the
runtime kernel runs the respective app code inside individual sandboxes. The
sandboxing mechanism prevents the use of shared memory and thus leaking
information across elements.

Elements and drivers together implement the app functionality by firing
events and routing them internally through the event bus. Figure 3.2 illustrates
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how this works for the simple security monitoring app which collects camera
frames from the living room camera and stores them at a user-specified cloud
storage, e.g. Dropbox. The driver of the IPCamera element is configured
to read a new frame (one frame per second) from the living room camera, and
forwards that frame to the app’s untrusted AppCode element instance that pre-
pares the payload for the web call and sends it further to the HttpRequest
element. This payload is eventually forwarded to a driver responsible for the
cloud call operation.

The HomePad hub architecture is general, allowing for future extensions
with new element / drivers. These can be automatically fetched and instanti-
ated by the extensions manager when new devices are added by the hub ad-
ministrator, based on the device type or even an exact device model. Consid-
ering that there can be multiple device drivers available, the users may choose
the desired one based on the driver’s overall rating or the element developer’s
authority. Finally, the element dashboard provides an overview of all the el-
ements / drivers installed on the hub. Through it the hub administrator can
check elements’ state, operation statistics and error logs (if any).

Additionally, HomePad architecture was carefully designed to avoid ven-
dor lock-in scenarios. For this purpose, HomePad depends on a common run-
time environment which can then be extended with API extensions contributed
by the open-source community. Smart home service providers can build home
apps to run on the hub, but enjoy no special privileges regarding the software
property or access rights of the hub platform itself. Furthermore, HomePad is
independent of the hub hardware and can be deployed on any home server or
personal computer.

At the same time, HomePad is not necessarily compatible with existing
IoT platforms. Nevertheless, we envision that these platforms can be easily
integrated with our hub device by exposing REST APIs accessible to the hub.
It is also not our goal to be fully compatible with existing IoT devices. Nev-
ertheless, we assume that the IoT devices managed by HomePad have a public
interface that allows for the communication between them and the hub.

3.2.2 App development

HomePad follows a dataflow programming model and offers a collection of
trusted API elements provides essential functionality for app developers to
build HomePad apps. There are elements allowing apps to interact with sensors
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and actuators, communicate with remote endpoints, perform computations on
sensor data and/or transform it by encrypting or anonymizing it, and regulate
app activity based on time of the day or a pre-defined schedule.

HomePad offers a simple programming interface for writing apps which is
based upon a domain specific language (DSL) implemented in the Java pro-
gramming language. Essentially, to implement an app, the developer must
declare the element instances and element connectors of the app’s flow graph.
The trusted elements are instantiated based on built-in classes or extensions to
the HomePad API which must be imported into the program. Untrusted ele-
ments must be written by the developer as independent classes with declared
ports and input port handlers. From our experience, the effort of writing Home-
Pad apps is comparable to the effort of writing apps for the popular smart home
frameworks, e.g. Samsung’s SmartThings, whose API is also based on a DSL
developed in Groovy.

While HomePad apps usually contain at least one untrusted element, it is
possible to build apps consisting of trusted elements only. This is a case, for
instance, for the apps that follow a ‘trigger-action’ model and change the state
of one sensor in response to the state change of the other. Such apps’ graphs are
simple enough to be implemented with just a few trusted elements connected
directly. Naturally, this kind of ‘if-this-then-that’ apps could be potentially
created by the users themselves through a visual interface similar to the one
provided by the IFTTT [17] web service.

3.2.3 Hub configurations

The previous section described how to implement a single app as a single flow
graph. In order to host multiple applications, HomePad must not only allow
multiple independent flow graphs to coexist, one for each app, but also allow
apps to interact with each other and with global system services. Furthermore,
it is necessary to ensure that apps cannot interfere with each other, e.g., by
modifying each other’s flow graphs. Moreover, HomePad must enforce strict
compliance with the homeowner’s privacy preferences when installing apps.

To address these requirements, first, we extend the notion of flow graph to
comprise not just a single app but the entire hub configuration. The hub config-
uration is represented by a fully connected flow graph that can be decomposed
into two types of subgraphs: system subgraphs and app subgraphs. The former
implement system-wide functions (e.g., event bus), and the latter represent in-
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stalled apps. Second, installing (or removing) an app consists of patching the
hub configuration so as to connect to it (or disconnect from it) the respective
app subgraph. To ensure correct behavior, the connection of an app subgraph
cannot be performed arbitrarily, but requires linking specific elements of both
app subgraph and system subgraphs. Third, for security reasons, HomePad as-
signs principal IDs to subgraphs and defines connection permissions to restrict
modifications to the structure of subgraphs (e.g., to prevent the installation of
an app from tampering with the flow graph of another app). HomePad assigns
the principal ID 0 to the system subgraph, and a new principal ID (>0) to
each app subgraph. As a general protection rule, HomePad does not allow to
interconnect elements of subgraphs with different IDs. However, connection
permissions can override this rule.

3.3 Implementation

HomePad can be run on any dedicated Linux-based computer. We imple-
mented home apps’ untrusted element sandboxes using Java Security Man-
agers to restrict access to network and underlying file system. As for the Sys-
tem Drivers, e.g., IPCamera driver, we used custom Python scripts to inter-
face low level communication between devices and HomePad’s system drivers
wrapping Java classes. Sensor data is received by system drivers and for-
warded to element drivers, which then serve it to apps’ element instances
through the event bus (see Figure 3.2). This dataflow is event-based and is
fully implemented in Java.

To simulate device communication, we used Arduino Yun boards and im-
plemented simple device drivers in C++ and Python, to interact with the Home-
Pad hub. These boards communicate over Wi-Fi through AES-256 secure
channels. To support application scenarios with different sensors, e.g., cam-
eras, microphones, we established simple APIs to facilitate the management of
these boards via the HomePad hub. To simulate video and audio sensors the
boards were equipped with a Sony USB webcam and electret microphones.

At install time the Model Checker analyzes the app’s DSL code in order to
validate the app’s privacy properties. This validation involves the generation of
the app’s corresponding Prolog model followed by a set of Prolog queries. The
Model Checker component was implemented as a Java class with SWI-Prolog
version 6.6.6 engine stubs. To provide the user with a visual representation of
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the app’s structure and privacy properties, we implemented an HTML report
generator using the Graphviz tool. This report shows the results of dataflow
analysis from the Prolog queries. In order for users to specify their own privacy
policies we developed a simple Android app offering a simple API that allows
users to pick data sources and sinks, as well as exception rules such as time
constraints or data modes (e.g., encrypted, anonymized). The app then sends
the Prolog rules to Homepad through an HTTPS connection.

The source code of HomePad and all of its components was made public
and freely available 1 under the Apache License 2.0.

3.4 Evaluation
We evaluated HomePad on three fronts: first, we evaluated its runtime perfor-
mance, then we analyzed the programming effort required to develop Home-
Pad apps, and, finally, we examined HomePad’s app verification effectiveness.
We also evaluated HomePad’s privacy policy specification mechanism and its
ability to model and express the variety of users’ privacy concerns.

3.4.1 Use-case applications

To demonstrate the variety of apps supported by HomePad, we developed four
apps using technologies and devices available today in the smart home envi-
ronment. Some apps rely on open-source software, i.e., Kaldi ASR [18] for
voice recognition and OpenFace [30] for face recognition.

1. LightsControl app - voice-activated lights control. Implemented using
API provided by Philips Hue smart lighting system [180].

2. FaceDoor app - face recognition-based door control: opens the door lock
automatically for authorized users by recognizing their face with a door-
bell camera. The app also notifies the homeowner through an sms or
push message when known users arrive home. Implemented with cus-
tom device drivers.

3. TidePooler app - voice-activated tide information service that performs
text-to-speech conversion when informing the user about the tide level

1https://github.com/zavalyshyn/homepad
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Figure 3.3 – Use case apps’ runtime performace.

in a specific location. This app was ported from the Amazon Echo [6]
skills collection.

4. SpotifyControl app - voice-activated Spotify player control.

The privacy risks associated with these apps come from the way they in-
teract with the user. Voice and face recognition requires a constant access to
the camera or microphone feed which is a source of sensitive information and
may be used without the user’s knowledge.

3.4.2 Performance evaluation
To evaluate the performance of HomePad, we adapted the four home automa-
tion apps described above to run under two different configurations: on Home-
Pad and as standalone Java apps. This setup allows us to compare the perfor-
mance overhead introduced by HomePad. To test the execution of these apps
and measure their performance, we specified voice commands and pictures as
inputs, according to each use case. The values presented reflect the average of
40 tests per app (i.e., 20 running inside + 20 running outside HomePad).

Figure 3.3 plots the execution time of our use-case applications when exe-
cuted on HomePad (light grey) and on standalone mode (dark grey). HomePad
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Execution
Lights Controller Spotify Controller Tide Pooler FaceDoor

Out In Over Out In Over Out In Over Out In Over

Recognition 2.2s 2.3s 5.8% 2.3s 2.4s 5.6% 2.4s 2.5s 4.1% 1.07s 1.11s 4.7%

Actuators 34ms 37ms 7.7% 0.7ms 1.1ms 63% 0.7ms 0.9ms 32% 30ms 35ms 15%

Network – – – – – – 1.4s 1.5s 2.6% 117ms 119ms 1.8%

Core – 3.6ms – – 3.5ms – – 8.8ms – – 5.7ms –

Total 2.2s 2.3s 6% 2.3s 2.5s 5.7% 3.8s 4.1s 5.4% 1.2s 1.3s 4.7%

Table 3.1 – Use case apps’ execution times breakdown.
Legend: Out and In define execution time obtained by running apps outside of
or inside HomePad respectively; Over shows HomePad’s execution overhead.

introduces an overhead which varies between 4.7% and 6%. This overhead is
caused by the sandboxes implemented by HomePad. From our experience,
considering that the total execution time varies between 2.2 and 4.1 seconds,
these overheads do not significantly hinder the user’s experience.

To better understand the factors that contribute to the overall performance
of each app, Table 3.1 displays the total app execution time broken down into:
recognition, actuators, network, and core. Recognition time is associated with
the execution of voice or face recognition and it measures the overhead of run-
ning these algorithms following our privacy preserving sandboxing approach.
Actuators comprise the time spent on commands to turn on lights, play the
next track on Spotify, output tide information as an audio stream and unlock a
door. Network time involves the communication with the outer world, whether
to fetch tide information, or notify a user someone just entered his home. Core
refers to the time spent on the event based communication within HomePad.

Most of the execution time of these apps is spent on voice and face recogni-
tion (between 61% and 99%), which constitute the most CPU-intensive tasks.
On the other hand, the time spent on actuators represents a very small percent-
age, never bigger than 3% or longer than 40ms. The network communication
accounts for 9% of FaceDoor’s total execution time, as it only features an API
call to a push messaging service. In Tide Pooler, networking cost amounts
to 38% taking on average 1.5 seconds (due to the download and parsing of a
large file containing tide information). Processing and routing internal mes-
sages within the HomePad core takes around 1% of the execution time.
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The overall total execution time mainly depends on the app activity and
remains consistent when running inside or outside HomePad. We see that for
all the use case apps the total overhead of running apps inside HomePad is
insignificant reaching 6% at most.

3.4.3 Application programming effort

To assess the programming effort needed to built a HomePad app we took our
most complex use case application – Tide Pooler – and implemented it as two
independent standalone apps using the speech recognition APIs provided by
Amazon Alexa [5] and Google Speech [22] platforms. A version of the app
using Amazon Alexa was implemented as an Alexa Skill [4] which leverages
Amazon’s backend to perform voice recognition and provides compatibility
with Amazon’s Echo device [6]. The second version was implemented using
Google Speech API which provides a cloud-based voice recognition service
that our Tide Pooler port uses when running as a Java desktop application.
Keep in mind that our baseline HomePad implementation of Tide Pooler uses
HomePad’s native voice recognition system module based on Kaldi [18]. We
assess the development effort in terms of the number of lines of code (LOC).

From our experience, we found that the development effort of implement-
ing Tide Pooler across these platforms is quite comparable, requiring 331 LOC
for Amazon Skill, 332 LOC for Google API, and 370 LOC for HomePad. In
all cases, 35 LOC relate directly to the use case logic, 15 LOC relate to getting
tide information from a server, and 250 LOC correspond to parsing the json
file returned from the server. The remaining lines of code are specific to the
API of each platform. In HomePad, specifically, 70 LOC are associated with
adaptation to HomePad’s module-element architecture.

3.4.4 Detection of privacy violations

To evaluate whether HomePad is able to detect policy violations by a malicious
app, we altered the flow graphs of two use case apps, namely TidePooler and
FaceDoor, in a way that allows to collect raw sensor data from camera or mi-
crophone and leak it to the cloud endpoint controlled by the attacker without
the user’s knowledge.

Figures 3.4 and 3.5 show the flow graphs of original (benign) and malicious
versions of TidePooler and FaceDoor apps respectively. In both cases, we
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Figure 3.5 – Flow graphs of benign (a) and malicious (b) FaceDoor versions.

introduced an additional HttpRequest element configured to connect to a
malicious endpoint, and a direct connection from the camera or microphone to
the untrusted element.

Using the dataflow policy specification language we defined and activated
at the hub the following privacy policy:

block Frame from IPCamera to Internet.

block Audio from Microphone to Internet.
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Device Description Privacy Concern Privacy Policy

Echo Dot Interactive voice assistant that
records and responds to user
commands prepended with an
"Alexa" wake word.

Can the device record the
conversations even when the
wake word was not pro-
nounced?

allow Audio from Echo
to EchoAPI, transforma-
tion(wakeworddetection).

Nest Cam Video surveillance and mo-
tion detection with cloud
backup.

Is the camera active when the
owner is at home?

block Frame from NestCam to
NestAPI, except(at(20,8))

Barbie Doll Interactive doll that records
and responds to children’s
questions.

What can a toy say to the
child?

allow Audio from BarbieAPI
to BarbieDoll, transforma-
tion(wordfilter).

Table 3.2 – Privacy policy specification and translation.

This policy instructs HomePad to block any flow of raw audio or image
data going to the Internet from microphone or IP cameras. We then executed
the HomePad checker for each malicious version of the apps. In both cases,
HomePad has detected privacy violations and correctly identified and blocked
the malicious data flows.

3.4.5 Flexibility of privacy policies

HomePad benefits from the dataflow model’s flexible privacy policy specifica-
tion language. To demonstrate this flexibility, Table 3.2 presents three real-life
use-case scenarios inspired by the recent reports on smart home user privacy
concerns [20, 213]. In all of these use-cases the end users would benefit from
HomePad’s rich privacy policy specification and enforcement features.

The first example covers major concerns regarding always-on voice assis-
tants. Users increasingly worry that devices like Amazon Echo can silently
record and analyze their conversations [15, 12, 14, 23, 16]. Such concerns can
be expressed in a HomePad privacy policy with a rule requiring the wake word
detection before delivering the audio recording to remote service providers.
This policy can be then enforced at runtime using a particular trusted element.

The second example illustrates a common concern regarding home cam-
eras that have Internet connectivity. Users are essentially worried that their
cameras are active when they are not supposed to thus violating user pri-
vacy [73, 1, 24, 13]. In this particular case, the user wishes for his bedroom’s
camera to be inactive from 8 PM to 8 AM. Within HomePad this restriction
can be enforced using an exception rule configured to a desired time.
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The last example expresses common concerns over smart interactive toys.
Parents worry that such toys might leave children vulnerable to stealthy ad-
vertising or offensive content [106, 11, 25]. In HomePad a privacy policy can
enforce word filtering on the data the app wishes to send to a toy’s speaker.
Similarly to the first example, this policy leverages a special trusted element.

3.5 Discussion
In this section we provide a brief security analysis of HomePad and describe
its current limitations.

3.5.1 Security discussion

There are several attacks that a malicious home app may try to launch. If
we assume that the hub system and installed elements software is correct, an
attacker (i.e., a malicious app developer) may try to deploy malicious untrusted
element code undeclared in the app manifest in an attempt to execute it on
the hub. This attack, however, is prevented by HomePad, which only allows
the execution of elements that were explicitly declared in the app’s manifest
file. Non-declared elements will not be instantiated and executed at the hub.
Alternatively, all the untrusted elements that were properly declared, will be
executed inside a sandbox with restricted access to sensor data and network.

An attacker may attempt to craft the flow graph in the app manifest, e.g.,
adding concealed connections between elements in order to bypass sensitive
data to a data sink, or adding a large number of connections and elements in
order to increase the complexity of the graph and obfuscate the flow of data.
Such attacks can also be thwarted by HomePad, because it fashions a complete
model of the flow graph which captures all elements and connections which
can, therefore, be detected by the Prolog checker. A malicious app may also
attempt to modify existing connections or elements of the system subgraph of
the hub configuration. However, HomePad mitigates such attacks by assigning
unprivileged IDs and constraining the app flow graph to be patched on properly
authorized system elements.

A malicious home app may try to exfiltrate information through implicit
flows, e.g., by omitting or issuing a call to the HttpRequest element and
consequently to a remote web host. Sensitive sensor data may not be even
present in the payload of such a request; instead, just a fact of making an
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HTTP request may signal a certain boolean event, be it a motion at home or
a door lock state. In general, such implicit data flows are difficult to detect
and prevent. While HomePad effectively makes the data flows within a given
app explicit, implicit flows may not be necessarily detected since they do not
directly carry sensor data from a given source to a given sink. HomePad may
only predict the existence of such implicit flows given certain characteristics of
the app flow graph, e.g. untrusted elements having access to both raw sensor
data and network resources, and point it out to the end users. They may then
decide whether or not to proceed with the installation of a given app.

A limitation of HomePad is that its privacy verification depends on the
correctness of both the output rules of elements and the rules of privacy poli-
cies. If errors exist in rules, the flow graph will no longer reflect the app’s
implementation logic which may result in undetected breaches. This problem
is alleviated by the fact that the Prolog rules of elements are usually simple and
relatively easy to analyze.

An additional limitation comes from the conservative approach used for
data flow verification of untrusted elements. By default, HomePad assumes
the output of untrusted elements to be the same as their inputs. Such a strict
approach was selected in order to safeguard the user’s privacy, even if it means
to incur some false positives. Nevertheless, it is possible to refine the verifica-
tion granularity, for instance, by using dynamic taint-tracking within untrusted
elements to verify the input/output data types.

3.5.2 Operational considerations

A potential concern is that it might be complicated to manage HomePad hub
for people with no computing background, especially to create the privacy
policies. Moreover, the privacy policies can also grow in complexity depend-
ing on the number of installed apps. Creating and managing complex policies
may cause the users to experience decision fatigue, a state in which a user gets
overwhelmed by options and acts recklessly [95, 102, 94]. To maintain the pri-
vacy policies more manageable, HomePad includes pre-defined rules that can
be used as is according to the profile of the user and the smart home devices
he or she owns. These built-in rules contain best-practice privacy policies as
recommended by industry experts or other tech-savvy HomePad users.

Another concern is related to HomePad’s backward compatibility with ex-
isting smart home systems. However, we argue that the market pressure for
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enhanced privacy and data protection may well justify a departure from exist-
ing IoT models in favor of alternative secure-by-design IoT platforms, such as
HomePad. Nevertheless, we plan to investigate in the future whether it would
be possible to automatically (or semi-automatically) extract the dataflow model
from existing platforms applications, e.g. Samsung SmartThings, so as to en-
able developers and smart home owners to reuse existing apps in HomePad.

3.6 Related work

There is a large body of work addressing home automation and IoT-related is-
sues, such as the privacy of sensor-generated data. Allard et al. [28] combines
the security of smart cards and the storage capacity of NAND Flash chips to
take the control of personal data away from cloud providers back to the users.
Centralized approaches have been proposed to address user personal data stor-
age access and management [69, 161, 32]. However, all these contributions
do not address the issue of apps sharing sensitive data in their possession. At
the same time, Privacy Capsules [124] processes raw sensor data only inside
sealed containers without network access. While Privacy Capsules limit access
to the network, HomePad allows the users to decide if an app may access data
and network resources dynamically.

Some recent works address these privacy issues from a network perspec-
tive. Davies et al. [78] propose the deployment of cloudlets to run applications
and manage their access to raw sensor data. Yu et al. [225] suggested using
routers to secure IoT devices by running micro network-security functions, act-
ing as security gateways for each device. However, in both cases it is assumed
the apps and functions are trusted respectively.

Fernandes et al. [135, 96] as well as Tian et al. [210] identified and ad-
dressed the problems of over-privileged apps in a popular smart home plat-
form. However, all of these systems focus mainly on security implications of
over-privileged apps and assume access to their source code. In ProvThings,
Wang et al. [218] perform IoT platform log analysis to detect malicious de-
vice actions. They, however, assume the smart home cloud platform execution
environment to be trusted, which is at odds to HomePad assumptions.

A decentralized trigger-action smart home platform DTAP was proposed
in [98]. It protects OAuth tokens needed to control and manage IoT devices
from being abused and shared with third parties. While DTAP renders com-
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promised OAuth tokens useless, it does not allow to track and control the flow
of user data to legit token holders. In contrast, HomePad allows to do so for
any third party involved.

There are several contributions that although not directly related could
complement our work. In the context of smart homes, HomeOS [86] simplifies
the management and interoperability of various home environment technolo-
gies. Xapp [62] facilitates resource sharing among Android apps distributed
on different home devices. All these contributions focus on managing the het-
erogeneity of the devices in smart home environment.

There are several systems that perform information flow analysis through
taint tracking [48, 193, 222], but also leveraging static code analysis [167, 36,
219]. This approach has also been used in mobile contexts [221, 121, 91].
These systems, however, do not address the smart home environment and its
complex interaction model.

Flowfence [97] uses information flow control to manage sensor data ac-
cesses from applications. The limitation of Flowfence is in its inability to dy-
namically modify the taint labels depending on the type of the data flow. For
instance, if an app reads the video stream from IP camera and applies the face
blur filter to the output stream, the taint label of the resulting data should be
changed. HomePad implements such functionality by utilizing trusted mod-
ules that perform data filtering and obfuscation dynamically. On the other
hand, FlowFence offers no way to automatically verify the privacy properties
of an application against users’ preferences, resorting instead to a pure runtime
mechanism, incurring in considerable performance overhead.

3.7 Summary

In this chapter we presented HomePad a privacy-aware home hub that allows
users to supervise how the data generated by their smart devices is processed
and used by home applications. HomePad applications follow an element-
based programming approach, which makes all the data flows between app
elements explicit and subject to inspection. By laying out applications in this
fashion, HomePad can automatically leverage its Prolog-based data flow verifi-
cation mechanism in order to assess these applications’ compliance with users’
privacy policies. Additionally, Homepad’s expressive privacy policy specifica-
tion supports a broad spectrum of privacy concerns users have. By combining
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these two capabilities, Homepad provides runtime data control to its users.

HomePad makes a strong case for local-first data processing model in a
smart home scenario. Various apps and services can benefit from such a model
without necessarily sending sensitive sensor data to the remote cloud servers
for further processing. All the required computational and storage resources
can be provided by the HomePad hub. Processing sensor data at the edge has
an additional advantage of reducing the network latency and service response
time. The latter is essential for voice-activated applications that try to minimize
the time between the user command and a triggered action.

While local-first approach is beneficial for both user privacy and applica-
tion performance, certain smart home scenarios require sending sensor data
to the external servers. This is a case for applications that rely on machine
learning techniques to provide a given service, and need to send sensor data to
the remote server with significant computational resources otherwise not avail-
able at the local hub device. Furthermore, some other applications may have
integrations with various third-party services, e.g. Dropbox, as part of their le-
gitimate logic. Controlling such external data flows is impossible with Home-
Pad since they span beyond its security perimeter. HomePad can only block or
allow these flows but may not enforce any further restrictions. In the next chap-
ter, we describe the ways to extend data flows control to the untrusted cloud
environment without sacrificing user privacy and application performance.





Chapter 4

PatrIoT: a private IoT platform

4.1 Introduction

Despite the growth and popularity of smart home devices and systems, this
technology remains overshadowed by a cloud of security and privacy con-
cerns. Today, by relying on IoT platforms like Samsung SmartThings, Amazon
Alexa, or Apple HomeKit, homeowners can seamlessly control smart devices,
such as smart locks, virtual assistants, or baby cams, and run third-party appli-
cations (apps). However, falling under the control of antagonist actors, these
systems can be turned into authentic spying platforms. In fact, once installed
various third-party apps can collect highly sensitive data, e.g., video, audio, or
the environment sensor readings, which can be abused in harmful ways [236].

Various mitigation techniques have been proposed for verifying apps’ se-
curity and safety properties [66] and improving access control mechanisms [97].
However, common across all these efforts is the assumption that IoT platform
providers are to be considered fully trusted. Currently, the platform providers
can fully control the IoT cloud backend and collect, store, and / or share
users’ sensor data. Unfortunately, such privileges have already caused serious
data misuse incidents that fall under the direct responsibility of IoT platform
providers, involving targeted advertisement [92], surveillance and forensic in-
vestigations [122], insider-related eavesdropping or massive data leakage [8].

We aim to revisit this assumption arguing that, in addition to malicious
smart apps, platform providers themselves can be a major source of potential
security and privacy breaches that have been previously overlooked. To protect

49
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against such threats, we present PatrIoT – a private-by-design IoT platform for
smart home apps in which homeowners retain full control over sensor data
generated by their devices. PatrIoT was designed with two goals in mind:
(1) prevent any arbitrary access to sensor data by provider of the cloud server
where PatrIoT is running, and (2) provide homeowners with a practical yet
easy to use interface to control sensor data sharing with third party apps they
install without overwhelming them with details.

To achieve the first goal, PatrIoT relies on a hardened cloud backend ser-
vice that runs inside a trusted execution environment (TEE) supported by Intel
SGX technology. SGX secure enclaves offer memory-isolated environments
that provide confidentiality and integrity protection against untrusted privi-
leged system processes. By processing sensor data inside SGX secure en-
claves, PatrIoT can effectively restrict the data access privileges of the cloud
provider. To reach the second goal, in analogy to a “firewall”, PatrIoT intro-
duces the notion of flowwall which controls how third-party apps use the sensor
data they request access to. Flowwall consists of an information flow control
(IFC) monitor that enforces the global device policies specified by the users.
In contrast to existing permission-based smart home systems [96], that are ei-
ther too coarse-grained or require certain expertise from the users to evaluate
the potential risks on a per-app basis, PatrIoT’s flowwall allows users to think
in terms of devices they have and how those devices’ data may or may not be
used by any app they install.

PatrIoT makes two central contributions involving its policy specification
and enforcement mechanisms. As for policy specification, many of the exist-
ing privacy-oriented solutions have failed to provide an adequate user inter-
face, overwhelming the users with low-level details and causing the decision
fatigue [56]. To address this usability challenge, PatrIoT’s UI was designed to
make the process of privacy policy specification intuitive and easy to follow
for a regular user. To define a policy, users operate with familiar device names,
meaningful data types, e.g. audio or video, and destinations where these data
types can or cannot flow to. The policy rules are defined once and applied to
all the apps installed in the future.

As for policy enforcement, it is necessary to efficiently track information
flows within and across individual apps, and validate the user policy. To this
end, PatrIoT relies on an element-based programming model and employs
static analysis and policy validation at the API level. As in HomePad, Pa-
trIoT apps are written in the form of a graph, where edges represent data flow
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paths, and the nodes functions provided by the API or by the developer. From
the graphs of installed apps, PatrIoT generates a global and sound data flow
model using first-order logic predicates to check for policy violations.

We built a prototype of PatrIoT by leveraging SCONE [34], which allows
us to deploy the PatrIoT backend securely in a Docker container running inside
an SGX enclave. PatrIoT provides a JavaScript API for app developers and
runs on top of Node.js. We use Prolog predicates to generate and check the
apps’ data flow models.

We evaluated PatrIoT across multiple dimensions. Performance wise, we
observed that, despite some considerable overheads introduced by the SGX
technology, a single PatrIoT server can sustain the traffic generated by a typical-
sized household. By emulating a realistic deployment scenario populated by
10 different smart devices, and by implementing 20 different smart apps, we
were able to express a range of different policies, and validate that PatrIoT can
block or allow the data flows generated by these apps, thus demonstrating the
expressiveness and effectiveness of PatrIoT’s policies. Lastly, to assess the us-
ability and relevance of our system, we performed a field study involving 45
participants. We found that a majority of participants considered PatrIoT to be
easy to use, and its policy rules to be useful in protecting their privacy.

4.2 Design
We strongly believe that any IoT platform must be private-by-design. Private-
by-design means that the platform is implemented and functions in a way that
prevents any sensitive sensor data collection, processing and sharing without
user awareness and approval. The platform must not only detect and block
any attempts to circumvent this requirement, but also provide a proof that it is
capable to do so. In the next sections, we present a system and security models
of such a platform, and then describe our design goals and a threat model.

4.2.1 System model

The proposed system model is presented in Figure 4.1. Its central component is
the TEE-protected Smart App Runtime (TSAR). It consists of a software stack
which runs on a cloud infrastructure and provides the basic backend services
for managing smart devices and hosting apps. With a management mobile
app, a homeowner (user) can securely interact with the TSAR service in order
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Figure 4.1 – System model of a private-by-design IoT platform.

to manage his smart devices, and install and configure apps downloaded from
an app store. Once installed, these apps run inside sandboxes, and can access
sensor data based on permissions and a global user-defined security policy.

In contrast to existing IoT platforms, the TSAR service is hardened in such
a way that an IoT cloud administrator does not have any access privileges over
the users’ sensor data. This is achieved with two techniques: (i) by restricting
the TSAR service external interfaces so that only the management app or smart
devices are able to connect to it through TLS channels, and (ii) by running
it inside a TEE so as to prevent privileged OS processes from accessing the
TSAR memory where sensor data resides. A TEE is provided by a dedicated
hardware such as Intel SGX. Thus, a home user will only need to trust in
the implementation of the TSAR software, and acquire a proof of its secure
deployment in a cloud so as to obtain exclusive access rights.

To build this level of trust, we envision a model where the TSAR software
is maintained by a trustworthy code maintainer, which can be a single rep-
utable entity or a consortium, and released open source to help detect potential
code vulnerabilities. It can be shipped in the form of a container or VM im-
age ready to be deployed on general-purpose cloud with SGX support (e.g.,
Microsoft Azure’s ACC), or be offered as a service by cloud providers to all
security-conscious smart home users (e.g., on a pay-per-use model).

PatrIoT offers a clean slate IoT platform design which is not necessarily
compatible with existing devices, apps and platforms. While disruptive in its
nature, we argue there are strong economic incentives in favor of PatrIoT’s
adoption. First, there is a huge demand for privacy-preserving solutions among
consumers and think tanks [90]. Second, there is an increasing pressure from
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lawmakers for stricter data protection measures (e.g., GDPR in EU). Third,
the smart home market is still very fragmented and lacking standards; as such,
PatrIoT can make an important contribution to the consolidation of privacy-
enhancing techniques for smart homes.

4.2.2 Security model

Existing IoT platforms such as Samsung SmartThings rely on a discretionary
access control model where each app requests permissions to access a given
resource (e.g., a sensor reading). Once granted, however, permissions alone
fail to control how resources will be used by an app, and are difficult to manage
as the number of devices and apps grows. To overcome these limitations, the
TSAR service incorporates not only a permission-based model, but also a new
security abstraction named flowwall.

A flowwall implements an IFC-based security monitor that allows users
to: (i) reason about global data flows generated by devices rather than con-
centrating on individual apps, and (ii) block privacy-sensitive flows without
overwhelming them with details. It supports three intuitive data flow patterns:

• S2S: Smart Device→ App→ Smart Device: These are internal flows within
home, e.g., app reads the status of a presence sensor to detect someone’s arrival,
and turns on a smart light.

• S2M: Smart Device→ App→Mobile Phone: Flows from a smart device to
the user’s mobile phone, e.g., app that streams a video feed from a front door
IP camera to the user’s phone.

• S2W: Smart Device → App → Web: These are some of the most sensitive
flows, where sensor data is sent to Internet, e.g., an app sends motion event to
a remote website.

To characterize such flows and to easily specify policies for blocking or al-
lowing them, the flowwall is based on several concepts that Figure 4.2 helps to
introduce. This figure shows an example of a home scenario where four smart
apps are installed (A1-A4): a security surveillance app WatchMyHouse, a
voice-activated WillItRain app for weather forecast check, a LightMyPath app
for motion-triggered lights control, and a PhotoBurst app which notifies the
user with the camera photo when motion or contact event is registered.To per-
form their functions, smart apps may request access to certain objects named
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Figure 4.2 – Data flows in a smart home scenario with four installed apps.

endpoints. Endpoints represent system resources that can act as producers (i.e.
data sources) or as consumers (i.e. data sinks) of sensor data.

Data flows are represented by the arrows shown in Figure 4.2. For instance
smart app A1 reads frames from the user’s camera located in the living room
(LivRoomCam) and uploads them to a user’s Dropbox account, generating a Im-
age data flow between these two endpoints. Collectively, apps A1-A4 illustrate
all three data flow patterns, i.e., S2S, S2M, and S2W. The flowwall will i) keep
track of all possible apps’ data flows, and ii) allow or block specific flows ac-
cording to the rules specified in a security policy. For instance, by blocking
all flows from the living room’s camera (LivRoomCam), apps A1 and A4 would
necessarily be blocked. Next, we clarify our requirements to build an IoT sys-
tem based on a flowwall security monitor.

4.2.3 Goals and threat model

To build a private-by-design IoT system as described above, we have three ad-
ditional requirements: 1) the security policies must be easy to specify, 2) the
system should perform well despite the introduction of new security mecha-
nisms, and 3) the system should provide a developer-friendly API for writing
apps. Note, however, that it is not our goal to preserve compatibility with ex-
isting IoT platforms or legacy apps. Likewise, some existing smart devices
may not work off-the-shelf with our system. We redesign the IoT platform in
the interest of improved security properties.
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Our system must be secure against: (i) untrusted smart apps, which may
attempt to use the API to circumvent the user-defined security policies, e.g.,
read sensitive data from a sensor and send it to an unauthorized party; (ii)
network attacks, that aim to intercept the communications between the system
components, e.g., to launch MITM attacks; and (iii) cloud server admins, with
remote root-privileges, who may attempt to access or interfere with the volatile
or persistent state of the TSAR container to extract sensitive sensor data. Note,
we assume that these parties may not collude.

We assume that several components are trusted: the PatrIoT’s TSAR ser-
vice and a management app, the IoT devices firmware, the software compo-
nents of our IoT platform, the cryptographic primitives adopted for the im-
plementation of security protocols, and the underlying hardware infrastructure
used by the cloud provider. In particular we assume that the cloud hosts are
equipped with trusted hardware technology, namely Intel SGX, which we as-
sume to be correct. The mobile device running the management app is trusted.
Physical attacks and microarchitectural side-channel attacks are considered to
be out of scope in this study.

Next, we present PatrIoT – a system that provides a private-by-design IoT
platform – by focusing on its relevant design details.

4.2.4 TEE-protected smart app runtime

The core of our system is the PatrIoT TSAR service (see Figure 4.3). It was
built by leveraging SCONE [34], which offers a secure Docker container ex-
ecution environment on top of SGX-enabled CPUs and protects the container
processes from external attackers. It implements a Library OS with a small
trusted computing base. The TSAR service is provided by a containerized pro-
cess that runs a Node.js binary cross-compiled against the SCONE libraries,
and with a native Prolog engine add-on that is used for checking flowwall
policies. Node.js then runs the PatrIoT TSAR-specific components, which are
written in JavaScript.

The runtime manager is the heart of the TSAR service. It manages smart
devices, apps, and user configurations for a given home environment. In par-
ticular, it controls the life cycle of apps and maintains their execution con-
texts. Apps interact with the environment through an API, which leverages
an internal event bus for interfacing with drivers. There are multiple drivers
responsible for interacting with smart, mobile and web endpoints, and for of-
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Figure 4.3 – Components of PatrIoT TSAR.

fering other services (e.g., timers). The flowwall security monitor tracks all
apps’ data flows and enforces a user-defined security policy. The persistent
state consists of TSAR-specific files (e.g., security policy and configuration
files), and app packages installed by the user. It is protected by sealed storage
encryption techniques.

To obtain proof that the TSAR image has not been tampered with and runs
inside a legitimate SGX-enabled CPU on a cloud host, PatrIoT implements a
remote attestation protocol assisted by the SCONE Configuration and Attes-
tation Service (CAS). The CAS allows to encrypt certain parts of the Docker
container file system and decrypt them only after successful attestation (i.e.,
sealed storage). A newly instantiated SCONE container connects to the CAS
and requests a remote attestation. The CAS validates the enclave by check-
ing its hash value and other parameters. If the attestation succeeds, the CAS
provisions the decryption key necessary to decrypt the content of the container
file system. We use this feature to include a user-specific challenge inside the
encrypted container file system: a TLS key and certificate. If the management
app is able to connect to the TSAR service over HTTPS using said TLS cer-
tificate to authenticate the server endpoint, it means that the attestation was
successful. At this point the PatrIoT backend is considered to be trusted and
fully operational. Next, we explain how apps are programmed and supervised.
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R1. allow Everything from Anywhere to Anywhere.
R2. block Everything from Anywhere to Internet
R3. block Everything from Anywhere to Phone
R4. allow Image from LivRoomCam to Dropbox

at 12:00-14:00,Wed
R5. allow Everything from Anywhere to MyPhone

Figure 4.4 – Policy example for the scenario in Figure 4.2.

4.2.5 PatrIoT API

As in HomePad, PatrIoT implements a dataflow programming model in which
apps are represented as a graph of elements. It provides a rich library of API el-
ements that were carefully designed not only to offer easy-to-use programming
abstractions, but also to enable the implementation of a sound, meaningful, and
efficient taint tracking mechanism for flowwall policy checking purposes.

At runtime (see Figure 4.3), the TSAR service creates an application exe-
cution context which consists of (i) element stubs that point to the drivers that
implement the trusted elements used by the app, and (ii) stateless sandboxed
instances of untrusted element code. These objects communicate through the
event bus according to the paths that have been declared in the app’s manifest.
The flowwall security monitor oversees these flows, and decides whether or
not the app is allowed to execute depending on the rules in the security policy.

4.2.6 Flowwall security policies

A flowwall security policy consists of a sequence of allow or block rules which
are evaluated sequentially and applied atomically by the security monitor. The
flowwall is initialized with an implicit default rule (R0) which blocks all possi-
ble flows, i.e., no app will be able to communicate unless R0 is overridden by
a user-defined security policy. Next, we show how these policies are specified.

Overview by example: Unauthorized sensor data sharing with Internet des-
tinations or arbitrary mobile phones may lead to potential data exfiltration.
Figure 4.4 shows a simple policy that aims to whitelist the web and mobile
endpoints considered to be trustworthy for the hypothetical scenario presented
in Figure 4.2. It contains five rules (R1-R5) which are interpreted sequentially.
The policy first overrides R0 by allowing flows of any kind to occur (R1), and
then blocks all flows to the web and to mobile endpoints (R2 and R3); this
allows only data flows to occur within the home environment. Next, two ex-
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Figure 4.5 – Example of a privacy policy rule specified via PatrIoT UI.

ceptions are opened: R4 lets camera frame images to be collected from the
living room’s camera and uploaded to the user’s Dropbox account during a
certain time of the day (e.g. when the cleaning staff has access to the house),
and R5 allows sensor data flows to the user’s own mobile phone.

User interface for policy specification: PatrIoT’s management app provides
a simple UI for the user to specify their privacy preferences and expectations
regarding data flows that occur in their smart homes and IoT setups (see Fig-
ure 4.5). The interface follows the design presented in Section 2.2.2 and re-
quires the user to specify the data flow source, type and sink, and, finally, add
optional time restrictions and/or exceptions.

Through the same interface, the end users may then view the list of all of
their existing policy rules and edit them if needed. To make it easier to navigate
the list, the rules may be filtered by the device or data type, creation time or by
the rule activity (e.g. how often the rule was used to evaluate apps’ data flows).
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4.2.7 Policy enforcement

In contrast to HomePad’s hub controller which performs the verification of data
flows within a given app at install time, PatrIoT implements a more sophisti-
cated security monitor which performs such verification and policy enforce-
ment anytime the policy rules are added or modified. We will now describe
this mechanism in more details.

To enforce a security policy, the security monitor implements a policy eval-
uation algorithm which decides the execution state of every installed app based
on whether or not the internal app data flows violate the policy rules. The al-
gorithm updates an action vector (AV), where AV[a] indicates the intended
execution state for app a: off means the app must be suspended, or on means
the app can be started. Every time AV is changed, the security monitor disables
or enables the apps accordingly.

Policy evaluation algorithm: Figure 4.6 shows the inputs, the output, and in-
termediate data structures generated by the policy evaluation algorithm. For
inputs, it takes the element graphs of all installed apps, descriptors of existing
endpoints, and the security policy. Based on these inputs, the algorithm gener-
ates two data structures which aim to model all possible data flows generated
by the apps – the data flow graph and the data flow matrix; and a data structure
that expresses the policy rules in an efficient manner – the policy matrix.

To explain how the algorithm works, consider the scenario of Figure 4.2.
Assume that PatrIoT is configured with the policy shown in Figure 4.4 and that
only WatchMyHouse (A1) and PhotoBurst (A2) apps are installed. To ease the
explanation, we follow the algorithm along the four steps shown in Figure 4.6,
assuming that the intermediate data structures are built from scratch:
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1. Modeling of data flows: The security monitor generates a model of all
data flows that can potentially exist. This model consists of a set of Prolog
predicates that specify a global data flow graph (DFG) based on the installed
apps and existing endpoints. Figure 4.7 represents the resulting DFG for our
example scenario. Nodes consist of the aggregate elements (represented as
boxes) pertaining to all installed apps (A1 and A2) and the endpoints that these
apps have access to (represented in circles). Directed edges connecting two
nodes n1 and n2 indicate that data can flow from n1 to n2. The type of data
and its provenance is indicated in the labels attached to the edge. Each label
consists of a pair 〈d, e〉 which indicates the data type d and its provenance e,
i.e., d’s source endpoint.

If n1 is an endpoint and n2 is an element, it means that n1 produces a data
type generated by n1’s respective driver and later forwarded to the element n2.
This is the case, for instance, of element IPCamera, which is used in the context
of application A1 and reads an image from endpoint E2, i.e., the living room
camera. The label associated with this edge is 〈I, E2〉 to indicate an image I
that can be generated by E2.

If n1 and n2 are both elements, then the edges reflect the connections of
the respective app’s element graphs and the possible types of data that can be
transferred through these connections. These data types are indicated by the
label attached to the edge and determined by the output of element n1. This
output, in turn, tends to be a function of n1’s inputs, but it depends on the
specific functionality implemented by n1. Below in this section we explain
in more detail how this is performed, but assume for now that an element
propagates taint from all its inputs to all its outputs, in other words, the label
of each of n1’s outputs results from the union of the labels of all its inputs.
Thus, for instance, A1’s AppElement propagates label 〈I, E2〉 from its input to
its output, which means that HttpReq can receive image data from E2.

The last case is when n1 is an element and n2 is an endpoint, which means
that n2 is a data sink for the data types indicated in the edge’s respective label.
For example, HttpRequest can send to Dropbox an image originating from E2.

2. Extraction of data flows: The DFG model is used to determine all possible
data flows between source and sink endpoints, and record that information in
the form of a (sparse) data flow matrix (DFM). The resulting matrix for our
example scenario is shown in Figure 4.7. Rows and columns indicate source
and sink endpoints, respectively. DFM[e1, e2] is empty if no flow exists from
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Figure 4.7 – Intermediate data structures for policy evaluation.

The DFM shows that the images from the user’s living room camera (E2) can be sent
to Dropbox via A1 or to his mobile phone via A2, and that all possible destinations
of motion and contact sensor readings are limited to his mobile phone only via A2.
The PM shows that the action value for R4 is off : this means that this PM version is
covering a time span where that targeted flow is not allowed, i.e., outside the 12h-14h
time slot on Wednesdays.

e1 to e2; otherwise, it contains a list of pairs 〈d, a〉 which indicate the data type
d that can flow between them and identify the app a responsible for that flow.
To build this matrix, the security monitor executes a DFG Prolog query which
computes the labels of the ingress edges of every sink e2. From these labels, d
and e1 are extracted; from the element linked to e2, the app a is identified.

3. Expansion of the policy rules: Before the final stage of policy evaluation,
it is necessary to create an adequate representation of the security policy that
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allows to match the policy rules against the data flows described in the DFM.
In particular, it is necessary to properly parse the references to groups of end-
points (e.g., Anywhere) and take into account the temporal restrictions in the
rules (if any). This is the role of the Policy Matrix (PM) shown in Figure 4.7.

4. Policy evaluation and AV update: The last stage of the policy evaluation
algorithm is to match the rules of the PM against the data flows described in
the DFM and produce an action vector (AV) that tells which apps must be sus-
pended or resumed. For each rule ri, the algorithm obtains all the source-sink
endpoint pairs (e1, e2)ri and uses them to index the data flow table at position
DFM[e1, e2] and look up its value. If it is empty, no flow exists that matches
the rule and the algorithm continues. Otherwise, DFM[e1, e2] contains pairs
〈d, a〉 that tell the data type (d) of the matched flow and the identity of the app
(a) responsible for it. Next, the algorithm only needs to check if d corresponds
to the data type indicated in the rule to verify if there is a full match. In that
case, the action vector AV is updated according to the action instructed by the
rule: if action is allowed, then AV[a]=on, otherwise, action is denied, and
AV[a]=off. After traversing all rules the final version of AV is [on, off ], i.e.,
A1 will be enabled, and A2 disabled.

4.2.8 Data flow graph model generation
As mentioned above, the security monitor generates a DFG model that can be
used for extracting the data flows between any given source and sink endpoints.
As in HomePad, we use first-order logic to create this model. For any given
app, the security monitor reads the app’s manifest file, and creates two kinds of
predicates: topology predicates, and output taint propagation (OTP) predicates
expressed as Prolog statements. The former represent the app’s element graph;
the latter tell how each element propagates labeled inputs to its outputs.

Following the dataflow programming model, OTP predicates for trusted
elements are statically defined as part of the PatrIoT API. For each trusted
element of the API, along with its JavaScript implementation, there is an ac-
companying file containing the element’s OTP predicates. For the untrusted
elements a general OTP predicate is used which models all such elements as
‘funnels’, i.e., the labels from all the element’s inputs will be forwarded to
every single output port.

When generating the DFG, the security monitor loads the OTP predicates
for trusted and untrusted app elements into the DFG model. Based on these
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predicates, the security monitor can model the tainted labels propagation within
the app. Finally, to determine all the data flows between any given source and
sink endpoints, PatrIoT uses a flows rule (see Section 2.3.2), which aims to
detect if a certain data type can flow from endpoint e1 to endpoint e2.

By issuing this query to a first-order logic engine, existing solutions will
be found by unifying it against the topology and OTP predicates of the DFG
model. If there is a sequence of interconnected nodes that propagate a data type
from e1 to e2, a result will be found and assigned to X. The security monitor
uses this technique to fill in the data flow matrix.

4.3 Implementation

We implemented a full prototype of the PatrIoT system. In total, we wrote
∼20K lines of JavaScript code. The TSAR container was built using a Docker
image featuring a Node.js v.8.9.4 binary cross-compiled against SCONE libs.
Node.js includes a native add-on that implements a Prolog query engine based
on SWI-Prolog v.7.7.8 which was also cross compiled against SCONE libs to
enable execution within an SGX enclave. We developed in total 17 drivers re-
sponsible for the implementation of 35 trusted elements. These include drivers
to interact with various smart home devices, e.g., smart lights and IP cam-
eras, web drivers for standard HTTP connections as well as OAuth2 ones, and
various sensor data processing elements, e.g. speech recognition.

The management app consists of a React-based frontend that serves a dy-
namic web application to connected clients. This application was designed to
be used on both mobile and desktop devices. Through this application, the
users can connect new devices, add new policy rules and install or delete vari-
ous third-party apps.

The PatrIoT backend was implemented as a REST API server provided
by the runtime manager of the TSAR service. This backend manages user
configs (e.g. user credentials and privacy policy rules), connected devices and
installed apps. To sandbox untrusted app elements, we rely on the VM2 [3]
implementation of a VM sandbox module for Node.js. Sandboxed code cannot
import external modules, nor any global variables or classes from the main
PatrIoT context.
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Figure 4.9 – Emulated smart home setup.

4.4 Evaluation

We present our evaluation of PatrIoT focusing on three main aspects: i) per-
formance, ii) expressiveness, and iii) usability.

4.4.1 Case study

To evaluate our system, we recreate the smart home scenario displayed in Fig-
ure 4.9. This home belongs to a family of three: Samantha, John and their baby.
A nanny comes occasionally to babysit. There is also a predefined schedule
for cleaning staff to access the home.

We emulated ten devices deployed in the smart home. The front door
lock was emulated using an Arduino-based contact sensor. Presence, motion,
smoke sensors and an alarm were emulated using corresponding Arduino-
based sensors (HC-SR501 PIR, MQ-2, piezo buzzer). IP cameras were em-
ulated using a USB camera attached to a Raspberry Pi device and streaming
an MJPEG video. The same Raspberry Pi equipped with a microphone and a
speech-recognition software running on it was used to emulate a voice assistant
device. Finally, we used a Philips Hue light bulb as a smart light device.

We implemented 20 PatrIoT applications for this smart home scenario.
Their functionality ranges from device-to-device interaction (e.g. LightMy-
Path, Economie), to device-to-mobile (e.g. PhotoBurst, SmokeAlarm, Baby-
sUp) and device-to-web (WatchMyHouse, SmartSecurity) interaction. A set of
voice-activated apps can either interact with local devices (DoorCheck, Light-
ItUp) or web services (SpotifyController, WillItRain).
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4.4.2 Performance

To assess the performance of our system, we evaluated independently the sys-
tem initialization time, the system maximum throughput, and the performance
of applications.

Experimental setup: The system initialization time comprises three parts: at-
testation time, TSAR service bootstrap time, and app loading time. For the
remote attestation we relied on a locally deployed SCONE CAS server run-
ning on the same machine. The attestation time includes the time needed to
authenticate PatrIoT with a CAS instance, receive a session key, decrypt the
PatrIoT core files, and start the TSAR service. Bootstrap and app loading times
were measured separately after the remote attestation process.

We evaluated the maximum system throughput by stress-testing the TSAR
service. We used the wrk2 tool running on a second machine in the same
network and generating a constant throughput load. We then measured the
observed latency. We set the number of concurrent connections equal to the
number of devices in our case study (ten). We increased the throughput grad-
ually until the latency started to degrade or socket connection errors appeared.
We recorded the maximum throughput right before the saturation point. As a
reference, we used the latest Apache2 web server.

To analyze the performance of PatrIoT apps we used a benchmark based
on the use-case apps described in Section 4.4.1. We measured the time it took
to execute a complete app data flow graph: from the time a trigger event was
generated until the time it was fully processed by the app. We also measured
the Prolog query time for each app’s DFG model. This is the most time con-
suming step of the policy enforcement algorithm (see Section 4.2.7).

For our testbed, we used two servers running 64bit Ubuntu 18.04.4 LTS
with a 16-core 3.60GHz Intel i9-9900K CPU and 16GB of RAM. We adopted
the 19.03.9 version of Docker engine to run PatrIoT. PatrIoT core files inside
a Docker image were encrypted using SCONE’s File Shield. We evaluated the
performance of PatrIoT running inside and outside of SCONE SGX separately.
Obtained values were averaged across 20 runs.

System initialization time: Table 4.1 presents PatrIoT’s attestation, bootstrap
and app loading times. It takes on average 13.5 seconds to attest PatrIoT run-
ning inside an SGX SCONE enclave. Most of this time is taken by communi-
cation with a CAS server and decryption of PatrIoT core files after a successful
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Environment Attestation time, s Bootstrap time, ms App loading time, ms

Inside SGX 13.5 14.979 117.73

Outside SGX n/a 4.258 1.012

Table 4.1 – Attestation, bootstrap, and app loading times.
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Figure 4.10 – Throughput versus latency evaluation.

attestation. Additional delay comes from the fact that SCONE needs to allocate
the required memory resources at enclave start time which depending on the
specified heap size might take more time. However, considering that PatrIoT is
a server component which needs to be started only once and run continuously
such a one-time delay can be tolerated. The bootstrap time overhead of using
SGX is just 10 ms which is mostly caused by enclave transitions during system
calls. The app loading time overhead reaches 118 ms, which is the time it takes
to decrypt the app files in the container’s encrypted file system.

Load test: Figure 4.10 features the results of PatrIoT server test when run in-
side and outside SGX SCONE enclave. PatrIoT Server performed similarly in
both settings until the load reached 1900 requests per second, at which point
the latency of the PatrIoT’s SGX version started to degrade. The standalone
version of PatrIoT reached a saturation point at around 9000 requests per sec-
ond. Since many smart devices generate low-rate network traffic, this limit is
acceptable. We observed nearly 5x performance loss when running PatrIoT
inside an SGX SCONE enclave. This is consistent with the original reports by
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Figure 4.11 – PatrIoT app benchmark performance.

SCONE authors [34]. SCONE is not optimized for network-intensive applica-
tions like PatrIoT. Apache outperformed the TSAR service, since the former is
multi-threaded, while the latter’s Node.js engine is single-threaded.

Application performance: The left side of Figure 4.11 displays the execu-
tion times for each use-case app. Execution times are tightly dependent on
each app’s workload, ranging between 32 and 690 ms (inside SCONE). Apps
that send sensor data to the Internet or as part of the push notification (e.g.
AudioMessage, Baby’sUp) often have the highest execution time due to the
network latency and the data transfer rate.

The right side of Figure 4.11 features the time needed to execute a Prolog
query and extract flow information from a given app’s DFG. The average query
time is 4.7 ms and 1.84 ms (inside and outside SGX SCONE) for the apps
with a simple DFG. If an app has a DFG with multiple data sources, Prolog’s
backtracking mechanism requires more time to inspect all possible data flows,
e.g., SmartSecurity app with 11 elements 6 of which emit different data types.
While its query time is in a stark contrast to other apps it is still below 70 ms.
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Rule ID Rule Text
RB1 block	Everything	from	Anywhere	to	Anywhere
RB2 block	Everything	from	Anywhere	to	Web
RB3 block	Everything	from	Anywhere	to	Phone
RB4 block	PresenceInfo	from	PresenceSensor	to	SmartLight
RB5 block	Audio	from	SmartAssistant	to	Web
RB6 block	Everything	from	BabyCam	to	Web
RA1 allow	Everything	from	Anywhere	to	Anywhere
RA2 allow	Image	from	LivRoomCam	to	Dropbox	at	12:00-14:00,Wednesday
RA3 allow	Everything	from	LivCam,Alarm,Smoke/Contact/Motion	Sens.	to	ADTSecurity
RA4 allow	Command	from	SmartAssistant	to	Spotify,	NYTimes,	BBCWeather
RA5 allow	Everything	from	Anywhere	to	John'sPhone,	Samantha'sPhone
RA6 allow	Everything	from	BabyCam	to	Nanny'sPhone	at	9:00-17:00,	weekdays

Rule ID A01 A02 A03 A04 A05 A06 A07 A08 A09 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20
RB1
RB2
RB3
RB4
RB5
RB6
RA1
RA2
RA3
RA4
RA5
RA6

Figure 4.12 – Summary of policy evaluation for use-case apps.

Note: red ( ) and green ( ) cells denote blocked or allowed apps respectively, apps
with yellow cell ( ) are conditionally blocked, empty cell means the app flows are out
of the rule’s scope.

4.4.3 Policy expressiveness
To assess the expressiveness of PatrIoT’s flowwall policies, we have written
several allow / block rules that make sense for our smart home scenario (see
Figure 4.12). The first three block rules (RB1-RB3) are the most restrictive:
RB1 blocks all the app flows, RB2 only blocks flows to the Internet, and RB3
blocks flows to mobile endpoints. RB4 rule displays how a S2S flow (see
Section 4.2.2) can be effectively blocked. Rules RB5-RB6 prevent the most
privacy sensitive data flows (voice assistant and baby cam) to the Internet.
The allow rules (RA1-RA6) start with RA1, which allows all possible flows,
followed by more restrictive ones based on certain conditions.

In general, John wants to prevent his smart home devices from accessing
the Internet, unless for communication with known and authorized services.
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For instance, such privileges are not needed to view the living room cam-
era feed on John’s or Samantha’s phones. However, John may want to allow
camera connections to his personal backup server (e.g. Dropbox) or security
company (e.g. ADT) in case of a break-in (rules RA2, RA3). With another
rule John can express his privacy concerns regarding a smart assistant device,
which can continuously listen for voice commands and can potentially record
user conversations and stream audio to unauthorized parties. To prevent this,
John can block all the raw audio flows from the smart assistant to the Internet
(RB5). For the voice-activated apps that require Internet connectivity specific
rules can be defined to grant access to targeted services (rule RA4).

The bottom part of Figure 4.12 shows the results of these rules applied
to our use-case apps. If we disregard an RB1 rule we can see that the ma-
jority of apps can operate nominally with all other rules in place. In fact, all
of these apps operate with device-to-device flows which are usually deemed
less privacy sensitive as compared to those that span across different domains
(Internet, mobile, etc.). A quarter of apps that issue calls to mobile or web
endpoints can be affected by rules RB2 and RB3. However, a set of custom
endpoint-based allow rules could be added by the user to unblock these apps.

4.4.4 Usability
Our last evaluation goal aims to assess the usability of our system, namely by
analyzing the added-value provided by PatrIoT’s privacy controls and assess-
ing the users’ experience.

Methodology: We conducted a two stage user study with 45 participants
(computer department employees) with a goal to determine common privacy
concerns of the smart device users, and their ability to express these concerns
within a PatrIoT’s UI. In a first stage, the participants were given the smart
home scenario described in Figure 4.9 and asked to decide if a given device
data flow should be allowed, blocked, or allowed only in a certain condition.
All three data flow types were exercised: S2M, S2W, and S2S.

The second stage of the survey was more practical. With the PatrIoT mo-
bile app the participants had to register a new user account, define policy rules
for a baby camera, and then verify a given app’s data flows against those rules.
In the end we asked the participants to tell us about their experience with Pa-
trIoT, namely, how easy it was to use it and how flexible the policy specification
language was when defining data flow rules.
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Figure 4.14 – Survey results: privacy preferences.

Findings about privacy preferences: Figure 4.14 presents our main findings
for the first survey stage, which was split into three tasks. In a first task, we
asked the participants to decide if data from the baby camera should be al-
lowed to flow to a nanny’s phone. Most participants (84.8%) chose to restrict
this flow temporarily (i.e. when babysitting); 13% and only 2.2% decided to
always block or allow such a data flow respectively. These results confirmed
our expectations: most of the people consider such a data flow to be highly
sensitive and want to limit access to it as much as possible.

As part of a second task, the participants were asked to decide if motion
sensor data can flow to smart lights. On the one hand, the majority of partici-
pants (54.3%) decided to restrict such a data flow to a certain time of the day
(when the user is at home). On the other hand, others (43.5%) decided to allow
such a flow without any restrictions. Finally, only 2.2% opted for blocking it.
The results are in line with our expectations: people are less concerned with
the device-to-device data flows taking place entirely within their home domain.

Lastly, in a third task, a motion sensor and its data flows to the Internet
were analyzed. All of the participants opted for restricting the data flows in
one way or another. We can conclude that participants are cautious even with
motion sensor data flows and prefer to restrict those when possible.

Findings about user experience: Figure 4.15 presents our findings in the
second survey stage. Most of the participants found PatrIoT rules useful in
protecting privacy (89.2%). Only a small fraction remained neutral (4.3%) or
disagreed with this statement (6.5%). These results highlight PatrIoT’s ability
to express smart home user privacy preferences of various complexity in a clear
and practical way.
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Figure 4.15 – Survey results: user experience.

Regarding the way the security policy rules are defined in PatrIoT, most
participants found it intuitive and clear (73.9%). A small fraction of partic-
ipants however found it slightly confusing (17.4%). Overall, the results are
quite promising: a per-device privacy rule approach proved to be clear and
easy to grasp and apply. However, some adjustments should be made to make
it easier to understand and define privacy rules (e.g. provide a step-by-step tu-
torial at first run). The participants also suggested adding default policy rules
for the average user to use from the start. These rules could be added automat-
ically based on the connected devices.

Finally, 82.6% of participants considered the PatrIoT to be easy and straight-
forward to use. At the same time, only a small portion of the participants found
it neither easy nor difficult (8.7%) or sometimes difficult to use (8.7%). Over-
all, the interface proved to be clear and intuitive for the majority of people.
This is an important finding for us since many privacy-oriented tools often fail
to provide a user-friendly interface or require certain expertise from users.

4.5 Discussion
Malicious apps may attempt to generate data flows that cannot be monitored
by PatrIoT’s security monitor. However, by simply crafting an app’s element
graph and using PatrIoT’s API elements, this will not be possible because our
system can preemptively create a sound model of all potential data flows based
on the app’s graph. The creation of covert channels based on communication
patterns to authorized network destinations may be possible in the current sys-
tem design, but they fall outside of our threat model. Devising methods for
traffic shaping or bandwidth reduction is an interesting topic for further study.
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Currently, our system is dependent on a relatively large trusted computing
base (TCB). In particular, PatrIoT’s TCB comprises its API and runtime code,
Node.js, Javascript engine, and SCONE’s library. In spite of this, the total
TCB size is comparable with other SGX-based systems, e.g. [185, 181, 130].
Studying ways for reducing the total TCB size constitutes an interesting avenue
for future work.

Finally, PatrIoT may be vulnerable to recently demonstrated side-channel
attacks on SGX enclaves [26, 72]. While we consider such attacks to be out of
scope, PatrIoT can take advantage of various mitigation techniques, e.g. [176],
or use an alternative TEE, e.g. ARM TrustZone.

4.6 Related work

The general idea of leveraging TEEs and SGX-shielded execution on the cloud
has been introduced for some years now [234, 195] and many systems have
been proposed to secure various workloads on untrusted cloud infrastructure
[47, 130]. PatrIoT is the first system that leverages these techniques to pro-
vide IoT service backend protections. Similarly to PatrIoT, a few papers [202,
178] have also suggested to use IFC techniques for prevention of IoT privacy
breaches in the cloud. However, in contrast with our work, these authors pro-
pose classic IFC models operating at a very low level of abstraction and assume
trusted platform providers.

An increasing number of systems has been proposed focusing on security
and privacy of existing IoT smart platforms, mostly SmartThigs. Some solu-
tions are concerned about: the physical safety of smart home systems [171,
85], enforcement of IoT network security [173, 209], efficient collection of
logging data for ulterior forensic analysis [218, 39], or analysis of security
and safety properties of smart apps [66]. PatrIoT complements these systems
by focusing exclusively on detection and prevention of privacy-sensitive smart
home data flows.

Several papers present refined access control systems for IoT environments
that are also concerned about tracking information leakage [136, 67, 224].
However, in some systems the security policies are defined per app, which
prevents tracking information flows across multiple applications. PatrIoT over-
comes these limitations by providing an original IFC model that can globally
track flows across all apps in home.
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Lastly, we highlight the differences between PatrIoT and the Flowfence [97]
system that we have described in previous chapters. Flowfence allows IoT
app developers to split their apps into modules that operate with sensitive data
sources and those that do not, and to track the data flows between those parts.
However, in contrast to PatrIoT, Flowfence employs dynamic taint techniques
that are vulnerable to timing side channel attacks.

4.7 Summary

We presented PatrIoT, a private-by-design IoT platform. PatrIoT ensures se-
cure data processing by leveraging SGX-protected environments. It introduces
the flowwall security monitor which allows end-users to obtain fine-grained
control of data flows generated by IoT apps, and prevent potential privacy
violations through the enforcement of a privacy policy. The privacy policy
specification language was proved to be effective in describing user prefer-
ences regarding sensor data flows, and PatrIoT’s UI was found to be easy to
use. The latter is encouraging considering that many privacy-oriented solu-
tions that were previosly proposed require a certain technical expertise from
their users. Our survey results suggested that was not a case for PatrIoT.

PatrIoT extends the dataflow control model from home environment to the
untrusted cloud without sacrificing the privacy of its users. All the data pro-
cessing apps and services that require significant processing and storage re-
sources to provide a given functionality, can now benefit from a secure and
flexible environment offered by PatrIoT’s runtime.

In general, PatrIoT serves as a main building block for private-by-design
IoT systems. With a local HomePad hub running computations at the edge,
and PatrIoT complementing it with a secure and private cloud computing, the
resulting system provides both privacy and availability guarantees to its users.
Such guarantees are essential in a world where more and more devices having
access to highly-sensitive user data are connected to the Internet.

Both HomePad and PatrIoT were designed with smart home scenario in
mind, which means that their high-level structure closely resembles the general
architecture of smart home platforms: local hub - cloud platform - management
webapp. There are, however, other IoT scenarios that have a slightly different
architecture, for instance, wearables. Various smart fitness trackers, watches
and glasses usually require a companion app running on user’s smartphone
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for sensor data processing and communication with a cloud backend. These
companion apps have direct access to raw sensor data obtained either from
the connected devices (e.g., heart rate) or built-in smartphone sensors (e.g.,
location), and can share it with unauthorized parties without user awareness.
A permission-based access control mechanism employed by popular mobile
platforms, e.g., Android and iOS, is unable to prevent such data leaks, since it
can only control apps’ access to a given data source, but not what the apps can
do with the data once the access has been granted. This is the same problem
popular smart home platforms face when dealing with home sensor data.

To provide a fine-grained control over data flows generated by the wear-
able devices, in the next chapter we desribe Flowverine – a system for Android
OS which extends the dataflow programming model and its data privacy guar-
antees to the mobile environment. Floweverine provides a missing piece for
building secure and private IoT systems, and closes the privacy gap between
the device and mobile endpoints.



Chapter 5

Flowverine: private Android apps

5.1 Introduction
The number of mobile apps collecting highly sensitive user data, e.g., location,
photos, or health-related data from built-in smarthphone sensors or various ex-
ternal IoT devices increased dramatically over the last few years. As the leak-
age of personal data can cause serious privacy breaches, app developers face
the challenge of making sure such data is handled securely. For instance, a
fitness-tracking app that reads the user’s heart rate from a Fitbit fitness tracker
must guarantee that this information can never be shared with unauthorized
parties. However, ensuring the absence of bugs and security vulnerabilities is
in itself a difficult task due to the complexity of the Android API. Furthermore,
any third-party libraries [40, 235] (e.g., ad libs) included in the app, may have
their own vulnerabilities, or, worse, contain malicious code leaking user data.
Thus, it is important to have mechanisms in place that allow both app develop-
ers and users to control sensitive data flows within their apps, and consequently
block those flows that can lead to security or privacy violations.

Unfortunately, despite the number of security improvements featured in
the latest Android OS versions, no mechanisms are yet available for enforcing
information flow control (IFC) policies. Many proposals from academia [49,
223, 68, 220, 221, 41, 129, 198] refine Android’s coarse-grained permission
system, but fall short at controlling how sensitive data is processed inside the
apps. Some systems [36, 155, 158] use static code analysis, which, however,
can result in high false positive rates, fail to track flows performed via Android
API, or may be impractical to adopt when the source code is not available

75
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(e.g., third-party libraries). Other systems overcome these limitations by using
dynamic taint analysis [91, 206], but require changes to the Android OS.

To complement existing techniques, we propose Flowverine, a system that
allows app developers to build secure-by-design privacy-aware Android apps.
Flowverine apps run on commodity Android devices and require no changes
to the Android OS in order to track sensitive data flows and enforce security
policies. The apps are written using a dataflow programming model and API
(possibly including third party libraries) so that all sensitive data flows within
an app can be tracked. App developers can specify security policies to white-
list sensitive data flows, e.g., “heart rate readings from a user’s fitness tracker
can be sent exclusively to a specific cloud backend and nowhere else”. Users
that install the app can verify such policies and employ additional restrictions.

Flowverine implements a taint tracking mechanism based on two tech-
niques. Firstly, to increase the abstraction level and enable efficient static taint
tracking, we built upon the concept of element-based programming and apply
it to complex Android apps. As in HomePad and PatrIoT, in Flowverine, all
sensitive data flows must become explicit by construction, i.e., an app must be
written as a graph of elements, in which elements represent compute units and
the edges represent data flows. Flowverine provides a set of trusted native ele-
ments that mediate an app’s access to the Android native API. Because trusted
elements come with a specification that describes how the data flows through
the Android runtime, Flowverine allows for sound static taint tracking to be
performed across Android API calls.

Secondly, if an app includes third party code that needs to access the raw
Android API, Flowverine uses sandboxes to isolate such code inside untrusted
elements, and Aspect-Oriented Programming (AOP) to intercept native An-
droid API calls and perform dynamic taint analysis in such specific cases. AOP
precludes the need to modify the OS, thus favoring compatibility.

Our performance evaluation shows that Flowverine has a relatively small
impact on app execution time and has no noticeable impact to the user experi-
ence. We implemented three use case Android apps that showcase the ability
of Flowverine to (1) prevent sensitive data flows that are not explicitly indi-
cated in the app graph provided by the app developer, (2) allow for the strict
privilege separation of multiple independent flows within any given app, and
(3) support the main Android API programming abstractions.
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5.1.1 Building privacy-sensitive Android apps

Android provides a popular platform for mobile apps. We highlight three major
challenges faced by developers when building apps that manipulate privacy-
sensitive data from local sensors or external connected devices. These chal-
lenges arise mainly from Android’s programming and security models.

Tracking direct sensitive data flows: Tracking information flows between
source and sink Android API calls – i.e., the calls that allow an app to obtain
sensitive data and send it to remote parties, respectively – based on the inspec-
tion of a data flow graph can be cumbersome and error-prone as a result of the
app separation into components (e.g., Activities) and the asynchronous nature
of Android programming. Many static analysis tools can help to automate this
task, but are seldom used in practice because of high false positive rates.

Tracking indirect sensitive data flows: Sensitive data flows can also be gen-
erated indirectly, i.e., outside the data flow paths between source and sink API
calls. Some flows can be established through internal Android data structures,
e.g., via an app context (akin to a global object store) in which independent app
components can store and retrieve data using specific API calls. An indirect
flow can then occur if one component stores data inside the app context and
another one reads that data from it. Tracking such flows using existing taint
analysis tools requires changes of the Android OS [91].

Enforcing privilege separation: Another difficulty lies in the fact that An-
droid’s permissions are too coarse-grained and many Android API calls have
no differentiated access controls for different parts of a given app. This compli-
cates privilege separation for different pieces of app logic. For instance, once
the network access has been granted to an app, one cannot restrict the range of
endpoints that the code (e.g., a third-party ad library) can connect to. Android
does not support access control policies based, e.g., on the target URL.

5.1.2 Element-based programming for Android apps

Given the benefits provided by element-based programming within a smart
home scenario (see Chapter 3), we propose to adopt it for building secure-by-
design Android apps that provide the same privacy and security guarantees as
HomePad or PatrIoT apps. As such, we introduce several innovations which
we describe below:
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Figure 5.1 – Programming models compared.

1. Android app components as element graphs: In Flowverine, each app
component is written in the form of an element graph (see Figure 5.1). As in
HomePad, an element executes some functional unit, and can only interact with
other elements through the explicit edges connecting them. The graphs are
expressed in a declarative fashion, which allows for integration with popular
visual programming tools for app development.

2. Trusted elements adopted for mobile API: The Flowverine API consists
of a set of trusted elements. These are provided by certified modules that are
assumed to work properly without undesirable side effects. Access to the na-
tive Android API, e.g., network calls, is mediated by specific trusted elements
that can be used for different purposes, namely; i) obtain data from a given
source (e.g., a hardware sensor, UI, or another app component), ii) send data
to an external sink (e.g., a network host, UI, or another component), or iii)
perform data transformation (e.g., data encryption). Each trusted element pro-
vides a well-defined interface.

3. Untrusted elements to host unmodified legacy code: As in HomePad,
untrusted elements serve the purpose of running sandboxed code provided by
the developer. In addition, Flowverine supports the inclusion of third-party
legacy libraries, which often require direct access to the native Android API.
To prevent privacy breaches Flowverine hosts legacy code inside untrusted el-
ements and needs to implement additional runtime mechanisms to block any
unauthorized API accesses.



5.2. DESIGN 79

5.1.3 Challenges related to Android specifics
Unlike HomePad apps that usually have a simple structure, Android apps con-
tain multiple components (e.g., activities or services) which interact with each
other through asynchronous callbacks. Tracking sensitive data flows in such
an intertwined system of classes and methods is a challenging task. To address
this challenge, Flowverine implements a middleware that provides an abstrac-
tion layer for all app components, including the UI ones, and controls the prop-
agation of events carrying sensitive data between them. Flowverine intercepts
native API calls and enforces runtime security policies without changes in the
underlying OS. We provide more details in the next section.

5.2 Design
This section presents Flowverine. We begin by describing its architecture, and
then discuss its most relevant design details.

5.2.1 Architecture
Flowverine provides a software framework for development of privacy-sensitive
Android apps such that the developers and users alike maintain fine-grained
control over the sensitive information flows generated by these apps. To this
end, Flowverine provides a middleware that exposes an API based on element-
based programming and a set of mechanisms that i) analyze the internal app
data flows using static and dynamic taint tracking, and ii) check such flows
against an information flow control (IFC) policy to identify potential security
or privacy breaches. An app developer can specify an IFC policy to validate
the app compliance with the terms of the service’s privacy policy (which states
how the personal data will be collected and managed) and the data protection
rules imposed by law. The user can specify an IFC policy (through a user-
friendly interface) which prevents the creation of specific data flows that the
user deems privacy sensitive.

Figure 5.2 presents Flowverine’s components. It includes an app devel-
opment toolchain that allows developers to build their apps, link them against
the Flowverine API, and check compliance against a developer-provided IFC
policy. If the app satisfies all the security requirements, the developer submits
a signed app package to an app store and registers it in the Flowverine certifi-
cation service, which validates that the app has been properly instrumented by
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Figure 5.2 – Flowverine framework components and workflow.

the toolchain. A user can then install this app through the Flowverine manager
app running on the user’s smartphone. The manager app manages all Flowver-
ine apps on the device, e.g., fetches the app package from the app store, and
checks that the app has been properly certified by the Flowverine certification
service. The manager app also provides a UI interface through which the user
can specify an IFC policy and check apps’ compliance with it. If the app passes
the check, it can then be executed. Every Flowverine app is linked against the
Flowverine middleware – i.e., a set of libraries – that provides all the runtime
support for the execution of the app, which is based on an element graph. Next,
we describe how a Flowverine app can be developed.

5.2.2 Application development

The process of developing a Flowverine app involves i) the implementation
of the app itself, and then ii) using the toolchain to build the app, check IFC
policy compliance, generate the app package, and submit it for public release.

To implement an app, the developer creates individual element graphs for
every app component. To illustrate this process, imagine we want to im-
plement a simple ClickCounter app that displays the number of times the
button on a screen was clicked. As in traditional Android programming, in
Flowverine, this app has an associated Activity and a UI layout file writ-
ten in XML. However, since this Activity will be implemented as an ele-
ment graph, it will be programmed as a Java subclass of Flowverine’s API
ActivityGraphDescriptor. This class provides methods that allow the
developer to specify the elements of the graph and their connections. Fig-
ure 5.3 shows what this graph looks like.
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Figure 5.3 – Element graph of ClickCounter app.

1 @CustomElement(name="HandleClick")
2 public class HandleClick extends Element{
3 int ctr = 0;
4 @EventReceiver
5 public void onEvent(...) {
6 sendEvent(new Event<String>("Cnt: "+(++ctr)));
7 }}

Listing 5.1 – Implementation of HandleClick element.

This graph consists of two trusted elements, namely ViewClick and
TextUpdater, and an untrusted one – HandleClick. The former imple-
ment UI functions and serve as interfaces to the button and a text view defined
by their respective IDs. The latter contains the code that handles a button click
event and increments the counter. This code of this element is provided in
Listing 5.1. According to the app graph, the events generated by ViewClick
will be routed by the Flowverine runtime to HandleClick, which in turn
will increment the counter and generate an output event. The Flowverine run-
time will route this event to TextUpdater which will display the counter
value on screen. Next, we present the Flowverine runtime internals.

5.2.3 Application execution runtime

The Flowverine runtime (see Figure 5.4) consists of a middleware compris-
ing several libraries, which are included in the app package along with the
code responsible for the implementation of the app’s element graph. At run-
time, Flowverine materializes the elements of the app graph into three sets of
Java objects : i) stubs that point to the implementation of the trusted elements
referred to in the element graph, ii) sandboxes initialized with instances of
untrusted elements’ classes, and iii) a path descriptor which restricts commu-
nication between trusted elements’ stubs and untrusted elements’ sandboxes
according to the connections in the app graph.
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Elements communicate by sending events to the corresponding stub through
an internal message broker: event bus. For instance, ViewClick element
sends an event on every button click. These events are routed by the event
bus strictly as specified in the path descriptor, therefore ensuring that no in-
formation flows can occur besides those specified in the app’s element graph.
The functions implemented by the trusted elements – through a set of built-in
drivers – is covered below.

5.2.4 Trusted elements API and drivers

The Flowverine API consists of a set of trusted elements that developers can
use to create their apps’ element graphs. The logic of these elements is imple-
mented by a set of drivers which are part of the Flowverine middleware. How-
ever, one of the potential obstacles in adopting such element-based program-
ming for Android, is the complexity of Android API, both in terms of number
of calls, and the sophistication of operations they implement (e.g., multithread-
ing). To cope with this complexity, we created various types of drivers which
interface with specific classes of functions provided by the Android API. Next,
we briefly mention the most important Flowverine driver types:

1. UI drivers: As opposed to smart home apps, mobile apps have very rich
user interfaces. The Android API has many classes for creating UI widgets



5.2. DESIGN 83

named Views. A View represents a UI object on the screen which the user
may interact with. Flowverine’s API offers trusted UI elements, e.g., the
ViewClick and TextUpdater, which provide standard functionalities of
Button and TextView, respectively. These elements have specific input and
output ports which can be connected to other elements. An input port of
TextUpdater element can be used to update a TextView on the screen, and
an output port of ViewClick can be used to emit a button click event to any
downstream element in the app graph.

2. Component drivers: Activities are very common components. An Activity
represents an app’s screen and is in charge of UI-dependent tasks. Through-
out its lifecycle an Activity instance transitions through different states and
provides a set of callbacks that are invoked when it enters a new state – e.g.,
onCreate or onDestroy. With Flowverine, developers can handle these
state changes by using the elements provided as part of the Activity Life Cycle
Module. For instance, the ActivityCreated element notifies the elements
connected to its output port when the graph’s Activity is created.

3. System drivers: This class of drivers includes trusted elements for support-
ing multithreading, inter-component communication (ICC), and inter-process
communication (IPC). For multithreading support, Flowverine apps can exe-
cute tasks in parallel with the AsyncFork and AsyncJoin elements. With
ICC driver elements the graphs of different app components can be connected.
Lastly, IPC drivers enable apps to interact with each other via the Send or
Receive trusted elements.

4. I/O drivers: Flowverine implements several drivers for interfacing with
network, storage, and sensors. For networking, Flowverine includes a Web
driver which allows apps to perform HTTP requests through trusted elements,
such as HttpGetReq or HttpPostReq. These elements must be set up
with i) the destination URL, and 2) the expected data types received in the
response. Other drivers provide access to bluetooth and location services.

5.2.5 Protection against untrusted element code

The code of the untrusted elements can be written by the app developer or be
part of a third-party library. In either case, to ensure that the app’s data flows
are strictly bound to the data paths indicated in the app’s element graph, such
code cannot be allowed to execute without restrictions.
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Flowverine adopts two mechanisms for securing legacy third-party libraries:

1. Sandboxing untrusted elements: To prevent untrusted element code from
interfering with other classes of the runtime sharing the same ART virtual ma-
chine, we take advantage of Java’s class loading model. Flowverine includes
a custom-made sandbox classloader which is in charge of resolving classes
within an isolated namespace. Each untrusted element instance is placed in-
side its own sandbox such that only the classes associated to it by the app
developer can be loaded and instantiated. Any attempts to access (blacklisted)
classes from the runtime environment will throw an exception. Some (harm-
less) classes are whitelisted and are delegated to the parent class loader, i.e.,
the class loader of the runtime.

2. Weaving untrusted elements code: It is also necessary to prevent untrusted
elements’ code from performing operations that circumvent the data paths de-
fined in the app graph. This may cause a buggy code to interfere with the
system or, worse, a malicious code (e.g., spyware shipped with a third-party
library) to leak sensitive data. Therefore, an untrusted element code must be
prohibited to perform the following operations:

• Direct calls to the Android API methods, which are reserved to be in-
voked by the Flowverine middleware.

• Execution of native (C/C++) code, which could be used to inject mali-
cious code in the Flowverine runtime.

To this end, the code is sanitized using Aspect-Oriented Programming
(AOP). With AOP, we define a set of execution points patterns to be executed
only by the middleware. By weaving the app in search of points that match
these patterns, and injecting a safety-guard code, we can assure that untrusted
elements’ code has no access to Android’s API or to a Java native interface.
In Flowverine, weaving is performed at build time, by a tool of Flowverine
toolchain named code weaver. It runs on Java bytecode files and inspects all
the app code provided by the developer, including any imported libraries.

Weaving is particularly useful in the case of legacy third-party libraries
which have not been modified to use Flowverine’s trusted element API. At
runtime, if an untrusted element attempts to execute a flagged Android API
call, the safety-guard code takes over and lets the security monitor (see Fig-
ure 5.4) decide what to do. The default procedure is to terminate the app, but
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the security monitor may allow the operation to proceed as long as the resulting
data flow follows the app’s graph connections. For instance, it can intercept
an HTTP call and forward it to the Flowverine network driver, which, in turn,
translates this call into an event compatible with a trusted HTTP element. If
such an element exists in the app’s graph and connects with the currently exe-
cuting untrusted element, then this operation can be seamlessly carried out.

5.2.6 Validation of information flow control policies

By ensuring that an app can only generate information flows explicitly de-
clared in the app’s element graph, Flowverine helps prevent security breaches
that may result from programming errors or by the inclusion of malicious li-
braries. Flowverine provides complimentary tooling support for validating the
information flows of a given app against an information flow control (IFC)
policy. Although for different contexts, IFC policies are useful to both app
developers and users.

Following the dataflow programming model, an IFC policy consists of a set
of rules aimed to flag specific information flows between sources and sinks in
a given app. Flowverine validates if any of the app flows violate the IFC policy
by using a Prolog engine to query the app’s model based on the policy rules.
Internally, there are two types of tools for IFC policy validation. App develop-
ers can use a policy checker included in the toolchain to check for undesired
information flows. For debugging and testing purposes the app developers can
specify their own IFC policy in JSON (then converted to a Prolog predicate
and checked against the app’s element graph).

App users can use the App Manager to supervise the information flows
generated by Flowverine apps and block any sensitive flows. Figure 5.5 presents
two screenshots of the App Manager’s UI: app installer view (left) and an app
privacy report view (right). To install an app, the user selects an app from a
list provided by the Flowverine app certification center. During installation,
the App Manager generates a default IFC policy that reflects the flows in the
app’s element graph. This policy is shown to the user, who can block specific
data flows or disable the app. The user may additionally force the app to ask
permission every time it attempts to obtain or send out a certain data type.
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Figure 5.5 – App Manager interface views

5.3 Implementation

We implemented a Flowverine prototype, and prepared a public release as an
open-source project. In total we wrote about 23K lines of Java code. This in-
cludes the Flowverine middleware and trusted element API (9K LoC), the App
Manager (3.5K LoC), Flowverine toolchain (1K LoC), the certification service
(0.7K LoC), and five testing Flowverine apps (9K LoC). We adopted tuProlog
as Flowverine’s Prolog engine, and leveraged AspectJ for code weaving. We
implemented a specific Flowverine BLE driver for interacting with a Xiaomi
Mi Band 2, which we used to develop a privacy-sensitive fitness tracker app.

Our current prototype has several limitations. Given the extent of the An-
droid API, we have only implemented a representative set of trusted elements
for the Flowverine API. In particular, our API is limited to: system drivers,
Activity and Service components, five different UI views, and I/O drivers for
networking, BLE interfacing, and location services.

5.4 Evaluation

We evaluated Flowverine on several fronts. We first examined the developer
effort required to build Flowverine apps as compared to the standard Android
apps. We then analyzed Flowverine’s performance with respect to applica-
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Figure 5.6 – Flowverine HeartBuddy app design.

tion compilation and packaging, as well as, runtime performance and memory
consumption. Next, we present a case study used in this evaluation.

5.4.1 Case study

To help understand some key challenges in building secure mobile apps, we
introduce a simple health-monitoring app named HeartBuddy. The app ob-
tains a heart rate value from a connected fitness tracker – via a Bluetooth Low
Energy (BLE) connection – displays it on the screen, and periodically sends
an average value to a hospital’s cloud service (nyp.org) for diagnosis of vari-
ous heart-related diseases. The app also displays an ad banner fetched from a
remote server (adspull.com).

Due to the private nature of a heart rate data the app developer must ensure
that only the average values are sent to the specified cloud service and nowhere
else. Likewise, the app users expect this property to hold at any time. Addi-
tionally, the developer needs to guarantee that there is no interference between
the main app functionality and the ad library activity. The ad library can never
have access to heart rate data.

In Flowverine, the HeartBuddy app can be implemented as a graph of el-
ements displayed in Figure 5.6. On the left side, there is BLE Service activ-
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ity responsible for interacting with a connected fitness tracker and properly
decoding its signals (proxied by native Android API). On the right, we see
two app activity graphs: one implementing the main app functionality, and
the other one responsible for ad banner activity. A new heart rate data event
emitted by a trusted HeartRateDecoder element arrives to an untrusted
HandleNewHR element, which forwards it to the Reducer.Average el-
ement that computes an average heart rate value and feeds it to the second
untrusted app element – SendHR. The latter one is responsible for preparing
an HTTP POST request to a hospital’s cloud server. This request will be sent
when the user clicks the "Send" button on the screen (an event handled by the
ButtonView.Click element). Finally, the TextView.Update element
updates the current heart rate value on the screen.

The ad banner operations are controlled by a second isolated graph consist-
ing of four elements. This graph starts execution when a new activity is cre-
ated (invoked by Activity.Create element). The untrusted FetchAds
element receives the latest ad data by making an HTTP GET request to an
adspull.com service and displays it on the screen via ImageView.Set.

Since the main activity graph and the graph responsible for ad activity
are completely separated, there are no data flows between their respective el-
ements. Flowverine also ensures that the network calls are restricted to end-
points that were defined in the app package: HttpReq controls the destination
and type of requests. By analyzing both app graphs, Flowverine can effectively
track the heart rate data propagation and transformation. The security monitor
detects the data type leaving the user phone (averaged value) which is in accord
with the user expectations. The security monitor also ensures that a third-party
ad library will not have access to heart rate data and will not be in conflict with
any of the GDPR regulations.

5.4.2 Comparison with legacy Android apps

Our comparison between Flowverine and the legacy Android system is twofold.
First, we analyze the security models of both systems: the former which is
based on an IFC model, and the latter on a discretionary permissions system.
Our goal is to evaluate if apps developed with Flowverine are more transpar-
ent regarding their sensitive data flows, and if our framework allows users to
understand and have a fine-grained control over how installed apps treat sen-
sitive data. To this end, we use the example HeartBuddy app (see Figure 5.5).
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App Name Accessed Resources Lines of Java Code (LoC)
Traditional Flowverine

ClickCounter UI 15 21

PhotoUploader UI, Filesystem, Internet 98 64

HeartBuddy UI, Dialog windows, Internet,
Bluetooth, Mi Band 2 services

480 174

Table 5.1 – Apps created for bare Android and with Flowverine.

In Flowverine, the App Manager reports to the user that: (1) the app collects
heart-rate data (i.e. data type) from a fitness tracker (i.e. source), and (2) the
app sends collected data to nyp.org (i.e. sink). The user is then offered the op-
tion to either block a given flow or require the app to ask for permission each
time the flow occurs. In vanilla Android, the permissions system allows the
user to deny the app’s access to BLE service, but not to the Internet. Thus, in
scenarios where mobile apps need to send sensitive data to the cloud, Flowver-
ine’s reports are more informative and give the user better control over the
app’s activities than Android’s native permission system.

Secondly, we assess the development effort required to write Flowverine
apps in terms of lines of code (LoC) as compared to the standard Android app
programming model. Table 5.1 presents the results of this comparison for three
apps of various complexity: ClickCounter (see Figure 5.3), PhotoUploader
(which uploads a photo to a cloud service), and HeartBuddy. We see that
for very simple apps, Flowverine requires more lines of code. However, the
LoC number is significantly lower (sometimes almost 3x less) for complex
Flowverine apps that rely on multiple existing trusted elements to interact with
various resources (e.g. device sensors, storage, network). Developers can thus
benefit from higher-level programming abstractions for writing their apps.

5.4.3 Performance

To evaluate the performance of Flowverine, we used a server with a 2.80GHz
Intel i7-7700HQ CPU and 16GB of RAM for build-time and validation exper-
iments. To evaluate the Flowverine’s runtime and App Manager performance,
as well as its memory and battery consumption we used Neffos C5A Android
7.0 smartphone with a 1.30 GHz CPU, 1GB RAM and a 2300 mAh battery.
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App Name Build time (ms) Overhead (ms)
Traditional Flowverine

ClickCounter 1556 2164 608 (39%)

PhotoUploader 1938 2772 834 (43%)

HeartBuddy 1692 2374 682 (40%)

Table 5.2 – Build time for traditional and Flowverine apps.

To measure how much time Flowverine adds to application compilation
and packaging, we compare build times of the three use-case apps devel-
oped using Flowverine and traditional Android programming models (see Ta-
ble 5.2). Flowverine adds on average 700 ms to the build time. In all cases the
overhead was mostly due to Code Transformer’s weaving process.

On average it takes 7.7 sec for Flowverine to perform an integrity check
on a newly published app package. The validation time depends mainly on the
app size, but with the infrequent app release cycle, this delay can be tolerated.

Next, we analyzed the time that the App Manager needs to inspect an app
graph, extract data flows information, and display this information to the user.
The inspection time correlates closely with the app graph complexity: with
more app elements generating various data types there are more potential data
flows for App Manager to inspect. It takes between 2 to 7 sec to analyze the
app graphs consisting of 3 and 21 elements respectively.

We also evaluate the Flowverine impact on apps’ startup time and some of
the common app activities. The results are presented in Figure 5.7. Flowverine
adds, on average, 200 ms to an app’s launch time, and 20 ms when switching
app activities. However, for other app activities, e.g. network calls, the over-
head is negligible (<1 ms). While Flowverine has a noticeable impact on app
startup time, there is no meaningful performance loss on app activities after
that. We note, however, that further performance optimizations are possible.

Lastly, Figure 5.8 features the results of memory consumption compari-
son. Flowverine apps use slightly more memory due to the sandboxing mech-
anism which replicates classes bytecode definitions consequently increasing
the amount of memory used by the app process. Also note that in our experi-
ments Flowverine had insignificant impact on app’s battery usage.
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5.5 Discussion

Our system must defend against potential security vulnerabilities introduced
by buggy or malicious code contained in a mobile app. Such vulnerabilities
could result in the circumvention of the data path restrictions enforced by the
app’s element graph, and / or in the violation of a given IFC policy. To assess
how Flowverine mitigates potential attacks, we consider four scenarios:
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1. Untrusted elements interact directly with device resources through an
Android API (direct access attack).

2. Unconnected untrusted elements of the same app graph sharing data with
each other (data sharing attack).

3. Malicious code set to run outside untrusted elements by executing native
C/C++ code (middleware bypass attack).

4. Altering the app’s bytecode after the weaving-based sanitization has
been performed (weaving disable attack).

Flowverine introduces several mechanisms to make app code more re-
silient to attacks. Its sandboxes prevent (1) and (2) by blocking the execution
of dangerous classes that aim to access the device’s resources, and loading the
classes of untrusted element code in independent class loaders so that they do
not share memory. Flowverine’s code weaver tool checks all the apps byte-
code, preventing attacks of the third kind. Lastly, the certification service of
Flowverine only validates apps that have been correctly sanitized by the code
weaver, essentially preventing attacks of the fourth type.

5.6 Related work

The most relevant solutions that aim to improve privacy in Android devices
can be divided in to two categories: data-flow analysis tools that inspect apps
either statically or at runtime, and extensions to Android’s permission system
that offer a mechanism to determine what data an app has access to.

App data flow analysis tools: The main goal of the data-flow analysis tools
is to inform users about possible leaks or dangerous behavior by applications
when treating sensitive data. Most of these tools [36, 155, 91, 163] employ
some kind of taint tracking to inspect the paths of tainted data samples. While
these tools provide high coverage, they may often lead to a high false-positive
rate, and overlook some control-flow data leaks. MutaFlow [158] detects this
last type of leaks but fails to detect a delayed attack.

Furthermore, a study carried in 2018 [187] shows that FlowDroid and Ic-
cTA fail to track flows that involve ICC calls with complex strings formed
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from sensitive data. TaintDroid [91] and TaintART [206] overcome these chal-
lenges, but require changing Android’s core as they use dynamic taint track-
ing. Additionally, these tools operate at a variable level and are prone to side-
channel attacks [38]. Flowverine provides a complementary technique that
combines static and dynamic taint analysis without changing the Android OS.

Moreover, the systems discussed in this section only aim at informing the
user about the potential data leaks but do not provide any mechanisms to en-
force privacy policies. Some solutions, however, give users more control over
their data by extending Android’s permission system, which we discuss next.

Extensions to Android’s permission system: Most proposed extensions [221,
41, 68, 220] enforce control over app data access but ignore internal app data
flows, making it difficult to determine, e.g., the Internet locations where sen-
sitive data is sent by a given app. Some systems that monitor how data flows
within apps [129, 198], rely on TaintDroid [91] to detect leaks, which means
they inherit TaintDroid’s limitations discussed above. Furthermore, all these
solutions [49, 223, 68, 220, 129, 198] but two [221, 41] involve changes to An-
droid’s core. Aurasium [221] and AppGuard [41] do not modify the OS, but
instead rely on dynamic instrumentation and repackaging of apps which alters
an original app signature. Modifications of the Android core or app packages
interfere with Android’s security ecosystem and raise compatibility problems.
Another problem with the studied solutions is that they all control access to
data at a very low abstraction level, such that it becomes hard for app develop-
ers and users to understand how apps use sensitive data and for what purposes.

In summary, Flowverine finds itself in-between two worlds. On the one
hand, similarly to taint tracking tools, it checks the propagation of sensitive
data samples from their sources to potential sinks. Flowverine however avoids
overtainting by operating on a higher level of abstraction (variable level vs.
user-friendly data type) and relying on predicates that describe data propaga-
tion rules within the app. On the other hand, Flowverine acts as a privacy
enhancement to the Android OS and requires no changes to its core modules.

5.7 Summary

In this chapter, we presented the design and implementation details of Flowver-
ine, a privacy-aware middleware that helps both Android users and app de-
velopers safeguard the formers’ privacy. Flowverine successfully adopts a
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dataflow programming model in the context of mobile apps, and allows de-
velopers to transparently expose internal data flows of their Android apps for
verification and analysis.

Android users can benefit from Flowverine’s flexible privacy policy lan-
guage to express their privacy preferences and expectations when installing a
given Flowverine app. These preferences translated into privacy policy rules
will be enforced at runtime for all the data flows generated by an app. In
contrast to existing Android’s permission-based access control system which
only allows to control access to a given sensitive data source but not the app’s
data sharing capabilities, Flowverine provides a much more fine-grained ac-
cess control, in which the user can restrict the explicit types of data the app has
access to and the endpoints the app is allowed to communicate with. Addition-
ally, users can enforce data obfuscation or anonymization whenever sensitive
data samples need to be sent to the remote endpoints.

Flowverine can also be a useful tool for app developers seeking to ensure
compliance with their advertised privacy terms or regulations enforced by law
(e.g., GDPR). With all the data flows made explicit, Flowverine allows the de-
velopers to clearly separate data flows generated by the main app activities and
those generated by third-party libraries, e.g. ad libs (if any). As a consequence,
any unintentional disclosure of sensitive data will be discovered and blocked.

Our evaluation shows that Flowverine performs well, and that, despite the
introduction of a new programming model, new private-by-design apps can
be created without any significant effort. In fact, with the rich set of built-
in elements, Flowverine apps often require less lines of code as compared to
vanilla Android apps. Furthermore, Flowverine can make app development
even more accessible to a wider community, as it can be easily integrated with
visual programming tools.

Flowverine represents a final building block in private-by-design IoT sys-
tems spanning across local home, cloud and mobile domains. The dataflow
programming model which is the central component of all three systems proved
to be effective in capturing user privacy preferences and enforcing those at run-
time. It is also highly-extensible and pluggable making it easier for developers
to create and share new elements with the community. However, third-party
elements pose a security and privacy threat when obtained from the untrusted
sources. In the next chapter, we will describe a way to bootstrap trust in these
elements even if they were developed by potentially malicious developers.



Chapter 6

Bootstrapping trust with NVP

6.1 Introduction
Dataflow programming model relies on a set of trusted elements provided as
part of an API. These elements mediate access to sensitive sensor data (e.g.,
IP camera’s frames), perform common data computations (e.g., face or speech
recognition, data anonymization, etc.), or send data to the remote endpoints on
behalf of the untrusted app code. They are provided by a community of third-
party developers and are deemed to correctly implement the desired functional-
ity. The problem, however, is that if a buggy or even malicious element imple-
mentation is installed in the system, serious security breaches can take place.
Our goal is to investigate the adoption of N-version programming (NVP) in the
design of IoT systems using dataflow programming model as a way to enhance
security and prevent leaking raw sensor data through ill-behaved elements.

By using NVP, rather than depending on a single implementation, each API
element depends on N different implementations (versions) that must concur
to produce the final result. The runtime system feeds sensor data as input to
each of the N element versions, and determines the overall output result based
on a particular decision policy. For example, with total agreement policy, all
partial outputs must be equal otherwise no output is released. A quorum policy
requires only a quorum of equal partial responses to be reached. We envision
different versions to be developed independently by an open community of de-
velopers. Insofar as the developers do not collude, N-version trusted elements
are no longer dependent on the correctness of any specific element implemen-
tation as it is the case in existing IoT platforms.

95
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Although applying NVP to the IoT architecture is relatively straightfor-
ward, the degradation of utility and performance can undermine the viability
of this technique. The utility is penalized if an N-version module, i.e., a group
of N implementations of the same element, frequently blocks any output to the
application due to result divergence reasons. Additionally, the performance of
an N-version module tends to be bound by the slowest element implementa-
tion involved in the output decision. In our context, the impact to utility and
performance will greatly depend upon how elements are implemented. If ele-
ments are developed from scratch, we expect most of the negative effects to be
caused by implementation or performance bugs introduced by the developers.
On the other hand, if elements are built upon pre-existing code (e.g., libraries)
such effects may also stem from incoherent specifications. The decision policy
employed also plays a critical role in determining the behavior of modules.

In this chapter, we provide an extended case study about the feasibility of
NVP for securing IoT systems. It seeks to characterize the impact of NVP
on utility and performance of API elements. To this end, we perform an in-
depth study focusing primarily on two main causes: software flaws and spec-
ification incoherence. We built multiple test modules performing a variety
of privacy-sensitive functions, such as image blurring, voice scrambling, k-
anonymization, face recognition, and speech recognition, among others. Then
we tested them extensively in different N settings and decision policies.

Our study reveals that NVP has a considerable potential for practical ap-
plication within an IoT environment. In particular, we found that: (1) for
N-versions that implement the same algorithm and follow the algorithm spec-
ification, it is possible to provide an N-module offering high utility as long as
the number of software flaws is residual, (2) for N-versions that do not follow
the same algorithm but perform the same task, we observe that although mod-
ule utility can be negatively affected by output divergence, it can be improved
by leveraging decision policies tailored to the problem domain space, and (3)
N-version module performance is typically bound by its slowest version, a
condition that can be mitigated by leveraging versions redundancy.

Next, we provide a more extensive overview of our motivation, approach,
and goals. In Section 6.3, we introduce an IoT system architecture based on
NVP. Then, we present the main contributions of this work: a comprehensive
study of the impact of NVP to elements’ utility (Sections 6.4 and 6.5) and
performance (Section 6.6).
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6.2 Overview

6.2.1 Trusted elements: goods and ills

To prevent unlimited access to sensor data, all the systems we have described
in the previous chapters allow their APIs to be extended with trusted elements
(TEs) aimed to implement high-level operations that mediate access between
the application and the raw data. TEs are developed by third-party developers
that are fully trusted to implement them correctly. As long as the latter holds,
such TEs constitute an effective approach to securely processing sensitive data.
However, malicious TE implementations can perform serious attacks:

A1. Incomplete results: during processing, a malicious TE could intention-
ally omit parts of the results in an effort to disturb users’ actions, e.g., hide the
part “and John” when recognizing the user voice command “send a message
to Rachel and John”.

A2. Incorrect results: similarly to the previous attack, a malicious TE could
alter the results, in order to trick the user into performing an unexpected and
potentially harmful operation, e.g., replace the name of the person the user
wants to call with a premium number, when recognizing the user voice com-
mand, or dismiss a smoke detector alert silently putting user at risk.

A3. Data inferences: in collusion with a malicious application, a malicious
TE could not only perform the operation it intended but also make inferences
on the raw data and disclose it to the application, e.g., identify the people in
the room in addition to recognizing the user voice command.

A4. Raw data leakage: the most devastating attack is the one where a mali-
cious TE colludes with a malicious application and leaks raw data, e.g., send a
raw camera frame as face recognition output.

6.2.2 Leveraging N-version programming

While the effects of attacks A1 and A2 can also stem from naive implementa-
tions, which are difficult to distinguish, we argue that attacks A3 and A4 are
the sole product of lack of platform control over TE outputs. Thus, we seek to
understand whether relying on multiple TE implementations can mitigate these
attacks. In particular, we aim to study the ability of NVP to prevent malicious
TE implementations from exfiltrating sensitive user data.
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TE implementations are expected to follow a TE specification. To this end,
we assume that the TE specification is publicly available among the developers
and users. As for a TE implementation, the TE binary needs to be publicly
released, possibly even after being properly obfuscated. An NVP-based TE
system must be able to detect the deviations in the elements’ outputs and react
accordingly.

The N-version decision algorithm used to merge the outputs of multiple
trusted elements’ implementations must be efficient in terms of execution time
and utility. Too strict algorithm will render the element useless, while the
relaxed one might alter the security guarantees. Overall, the overhead intro-
duced by employing N-version technique should not be significantly higher
compared with a single version of trusted element execution.

Our main adversary consists of the potentially buggy or malicious code of
a trusted element implementation. This implementation may try to output the
sensitive user data as is without processing it but such a result will not be con-
sistent across the outputs of all other implementations of the element, and will
be ignored by the decision algorithm. We assume that various implementations
of the same trusted element do not collude and are developed independently.
We also assume that the software and hardware platform of the system where
the trusted element executes are secure, and that IoT apps and TEs execute
in sandboxed environments. It is not our primary goal to secure against side-
channel attacks. The capabilities of the attacker consist only of the ability to
write arbitrary code as part of trusted element implementations.

6.3 Trusted elements modules

In this section, we present a general security architecture for IoT systems based
on N-version programming. This architecture relies on a set of N-version-
based trusted elements’ modules (henceforth called “modules”). A module
provides the functionality of a single TE implemented internally in a N-version
fashion, with each of the N versions being provided by independent develop-
ers. Each of these versions, called units, are required to implement the same
trusted element specification.

Whenever an application issues a request, the inputs are forwarded to all
N units and their outputs are compared with each other before a final output is
returned back to the application. Deciding whether or not a final output result
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Figure 6.1 – N-version trusted element module (with N=3).

is provided and what that output result will be depends on a decision policy
defined by configuration. In a particular policy, all N units must produce the
same result, which is then returned as output result, otherwise, the application
is informed that no result was generated. Thus, if any single implementation
unit produces a malicious output, this output will differ from the remaining
N-1 units (assuming no collusion) causing the final result to be suppressed,
preventing the malicious unit from propagating its effects to the application.

Figure 6.1 shows the internals of a module implemented by 3 units. The in-
put preprocessor feeds the input arguments to each unit and the decision block
implements a decision algorithm according to the provided decision policy.
The decision policy is a configuration parameter decided by the system admin-
istrator. Each unit is implemented by a program that runs in an independent
sandbox. The input processor and the decision block logic must belong to the
runtime system, which is also responsible for setting up the units’ sandboxes
and the data paths represented by arrows in Figure 6.1.

6.3.1 Module lifecycle

The lifecycle of each module comprises four stages. In the specification stage,
a cooperation between the platform and community developers results in the
production and public release of module TE specifications. The decision on
the creation of new modules is based on the community needs. A specification
features either the algorithm or high level function to be implemented, the
input and output data formats, as well as a group of custom decision policies.

Once the specification is out, the module enters the development stage in
which third-party developers independently implement their TE versions. This
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approach is similar to existing community-based software projects, e.g. De-
bian, where the members define task requirements and control the develop-
ment process. Each TE version must be packaged and signed by the developer,
and uploaded to the platform repository. By using a key that is certified by a
certificate authority, it will be possible to assess the identity of the developer
and prevent Sybil attacks, i.e., the same developer releasing and signing multi-
ple malicious versions of the module’s TE. Once authenticated the TE version
is packaged in the TE module and subsequently either made available for users
to install in case of a new module or automatically pushed for subsequent plat-
form module update.

The next stage is installation of the module by the users. Users can down-
load the latest version of the module from the repository and instantiate it lo-
cally at their IoT system. Default module settings work out of the box, however
experienced users may add or remove module units, and redefine the decision
policy according to their needs. Once the module is installed, the module en-
ters the execution stage in which applications running on the hub are allowed
to issue requests to the module. Note that modules may become temporarily
out of service in order to perform software updates (e.g., installing a new unit
or updating an existing one) and may also be permanently removed.

6.3.2 Detection of unit result divergence

The decision taking process is at the core of what makes N-version program-
ming effective at countering adversarial units. In the perfect scenario, each unit
is assumed to execute one of two possible versions: benign or adversarial. A
version is benign if it consists of a flawless implementation of the module’s
trusted element specification. A version is adversarial if it deviates from the
intended specification in order to tamper with or leak sensitive data. Thus, if
deviations exist between unit outputs, then at least one adversarial version is
present. Since different security properties can be attained depending on the
number of units in agreement, we define three decision policies providing three
agreement conditions:

Total agreement (TA) policy: This policy offers the strongest security guar-
antees. All N units must agree on the same output result in order for an output
to be returned. If this condition holds, the resulting value is returned, other-
wise an error is yielded. Thus, 1 benign version only is required to exist in
order to suppress the return of a corrupted result. In fact, for an attacker to be
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successful, all N versions must be both adversarial and collude in producing
the same output.

Quorum agreement (QA) policy: Only a quorum Q = bN/2c+ 1 units (i.e.,
a majority) needs to reach consensus on a common return value. If Q is found,
the module returns the agreed upon value, otherwise it reports failure. The QA
policy is weaker than the TA policy because Q > 1 benign units need to be
present to thwart an attack. Furthermore, a successful attack requires Q < N
colluding adversarial units.

Multiplex (Muxi) policy: This policy is the weakest of all and can no longer
be considered to provide N-versioning security benefits. Under a Muxi pol-
icy the decision block simply selects one unit output to be fed to the module
output. The unit selection is parameterized by a number 1 < i < N . This
policy is useful mostly for debugging purposes during the testing stage of the
module’s lifecycle.

The divergence between unit outputs in a module occurs due to the ratio-
nal behavior of a malicious developer who intentionally had not implemented
some version according to the trusted element specification of the module.
However, other causes may lead to undesired output divergence that may cause
undesired side-effects, namely: software flaws, and module incoherence.

6.3.3 Nondeterministic inputs

One cause of unit divergence is operational and occurs whenever a specific
trusted element depends on nondeterministic inputs, e.g., a random number,
the system time or date, etc. If different units obtain different readings for
the same intended input value, units’ computations will likely return differ-
ent results which may lead to failure in reaching a total or quorum agreement
conditions and harm module’s utility.

To avoid this problem, all nondeterministic inputs must be provided by
the preprocessor. Sandboxes must prevent units from issuing nondeterministic
system calls. If the version code depends on such calls, the input preprocessor
can execute those upon request and pass the same value to all units. A request
is declared by overriding the init method of the class of input parameters.
The init method of this class is invoked by the input preprocessor and can be
inherited by a subclass with the purpose of prefetching nondetermistic values.
To prefetch an input value in a module, the trusted element specification only
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Description

Image Blurring Module Specification

Pseudocode

To blur an image, compute the 
average of the RGB channels of the 
pixels surrounding each of the 
image's pixels. The pixel area 
affected by the blurring process 
depends on the input vicility factor. 
For example, for factor 1 the average 
includes the pixel itself and the 8 
immediately surrounding pixels.

1
2

3

Factor 1 Factor 2 Factor 3

Interface

Testing

Func	  BLUR(imgname,	  factor)	  
	  	  imageIn	  =	  inputImage(imgname)	  
	  
	  	  Foreach	  px	  In	  imageIn	  
	  	  	  	  pxs	  =	  getNear(px,	  factor)	  
	  	  	  	  rgb	  =	  RGBAvg(pxNeigbors)	  
	  	  	  	  setPixel(imageOut,	  rgb)	  	  
	  	  End	  For	  
	  
	  	  outputImage(imageOut)	  
End	  Func	  

Input arguments:
	  	  imageIn:	  ArrayList<Integer[]>	  
	  	  factor:	  Integer	  
	  
Output results:
	  	  imageOut:	  ArrayList<Integer[]>	  

Download BlurTest.jar	  
	  

To test the blur implementation My:
	  	  java	  –jar	  BlurTest.jar	  –fn	  My	  

Figure 6.2 – Image blurring module specification.

needs to assign this subclass to the type of the respective input argument. By
constraining all units to receive the same input, this approach prevents the
aforementioned operational causes for divergence.

6.3.4 Software flaws

A second unintended cause for internal result discrepancy is accidental in na-
ture, and is caused by flaws in versions’ software that cause the actual unit
execution to deviate from the expected value as defined in the trusted element
specification. In addition to harming module utility, flaws may negatively af-
fect the correctness of the module. As shown in past studies, programmers
tend to commit the same flaws in the same code regions, which may end up
resulting in the generation of incorrect results that can eventually appear at the
module’s output depending on how many units have reached consensus on the
same incorrect value and on the decision policy in place.

To reduce these negative effects, we define a format for trusted element
specifications that aims to be both unambiguous and human readable so as to
reduce the change of software flaws. Figure 6.2 depicts a simplified version of
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the specification for an image blurring trusted element. The specification for-
mat comprises: a description of the intended functionality, an algorithm rep-
resentation in the form of pseudocode, the interface of the module indicating
the input and output parameters and respective types, and a testing procedure
which may include specific testing code. While the description and the algo-
rithm representation aim to clarify misunderstandings about the specification,
the testing parts aim to help debugging. Since the specification is public, the
source code of the testing classes and types of input arguments / output results
must be provided.

6.3.5 Module incoherence

Module incoherence occurs if two or more units inside a module implement
different trusted element algorithms. For example, a face recognition mod-
ule may be based on software that implements face recognition using different
techniques. As a result, one version may be able to identify a face that a sec-
ond version cannot. Speech recognition is another example in which different
algorithms may yield very diverse outputs, for instance being able to detect
some words in a whole sentence, but not others.

A natural question that arises when dealing with the incoherent module
is whether it can be used for countering malicious version implementations.
In fact, even assuming the absence of software flaws, it will be difficult to
determine whether the divergence of results is due to a malicious version or due
to semantic differences between versions themselves. Faced by this challenge,
we make two decisions.

First, we require the modules must be explicitly specified as strict or loose.
A strict module is one in which all versions must implement the same algo-
rithm. For this reason, all versions are expected to strictly implement the al-
gorithm described by the trusted element specification. In contrast, a module
is loose if the implemented algorithm does not satisfy the specification com-
pletely. Version developers must clearly indicate the type of a given version.
Otherwise, installing a loose version on a strict module will cause internal unit
output divergence thereby severely degrading the module utility.

Second, to improve the utility of loose modules, we allow replacing the
standard decision algorithm of the decision block by a customized one (which
could be provided along with the trusted element specification). Since the stan-
dard decision algorithm simply tests the equality of units’ outputs, algorithms
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that generate slightly different outputs will immediately fail the test. To pre-
vent this, a customized decision algorithm may perform domain-specific tests
that may overcome small differences between outputs. The side-effect, how-
ever, is that by relaxing the equality requirement, an adversary may attempt to
exploit that degree of freedom, e.g., to encode sensitive data for a remote party.
Thus, by deciding whether or not to adopt a customized decision algorithm, an
end-user can chose between the modules’ utility and security.

Until now, we have presented an architecture for an IoT system based on N-
version trusted element modules. To thwart adversarial versions, each module
compares the results of output units and checks for total agreement or quorum
agreement conditions depending on the decision policy chosen by the system
administrator. We have also seen that the utility and security of each module
can be affected by other factors, namely software flaws and module incoher-
ence. The next sections focus on studying the impact of both these factors and
on performance evaluation.

6.4 Impact of software flaws
In this section we study the impact of version software flaws on the overall
behavior of modules. We specifically focus on strict modules performance.
Since they implement the same algorithm, it allows us to concentrate on dis-
crepancies due to software faults. For our study, we implemented several test
strict modules that feature common privacy-preserving algorithms for a smart
home sensor data.

6.4.1 Experimental methodology

We picked five different algorithms, and gathered three different implementa-
tions for each of them, with the help of five different volunteer developers. The
versions for each algorithm were developed independently by different devel-
opers. For each developer, we provided a complete specification and a testing
tool. The code was to be written in Java. Given the simplicity of the algorithms
involved, we requested developers to submit their implementations before and
after using the testing tool for debugging. While the implementations after
testing recorded no bugs, the implementations before testing featured some
bugs. Considering the purpose of this study, here we focus on the pre-testing
implementations. The algorithms to implement were as follows:
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Image blurring algorithm: An image blurrer can be used to protect users’
privacy, namely by anonymizing the video data gathered by cameras (see Fig-
ure 6.2). Given an image file as input, this particular algorithm calculates the
average of the RGB channels of the pixels in the vicinity of every pixel, and
returns the correspondent blurred image file. We ran a simple battery test con-
sisting of the blurring of 10 different pictures over vicinity factors of 1, 2 and
3. Afterwards, we made a byte-wise comparison between the expected result
and the implementation produced files, in order to assess the implementations’
correctness. In total, we executed 30 tests.

Voice scrambling algorithm: A voice scrambler can be useful in mitigating
attempts to identify the speaker and other nearby individuals. This algorithm
receives an audio clip as input, and after applying pitch shifting and distortion,
it outputs a modified audio clip where the voice sounds robotized. With respect
to testing, we exercised each implementation with 30 different audio clips.

Data encryption algorithm: RC4 is a stream cipher algorithm that can be
used to encrypt certain sensor data before transmitting it. The algorithm re-
ceives a message and a key as input and returns the correspondent encrypted
content. The final testing tool features 153K tests comprising tuples 〈message,
key, cyphertext〉, where both message and key were randomly generated
with increasingly longer sizes.

Data hashing algorithm: MD5 is a well-known hashing function useful in
assessing the integrity of data, e.g., RC4 encrypted data received by the re-
cipient. The algorithm takes a message as input and returns the hash of said
message. The final testing tool featured 41K tests. These tests consist of tu-
ples 〈message, hash〉, where every message was randomly generated with
increasingly longer sizes.

K-anonymity algorithm: Lastly, Mondrian is a top-down greedy algorithm
for strict multidimensional partitioning, with the goal to achieve K-anonymity.
Such an algorithm could be used in anonymizing IoT data (e.g., power con-
sumption readings), so that the user could, for example, supply that informa-
tion to an interested third party. With this approach, users’ privacy would
be kept, and the data would still be statistically useful. The algorithm re-
ceives an aggregation of tuples that represent users’ data, the tuple indexes
representing the quasi-identifiers, and a K-anonymity factor. The algorithm
is then expected to output that same aggregation of tuples, this time broken
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Module
Image Blurring Voice Scrambling Data Encryption

V1 V2 V3 V1 V2 V3 V1 V2 V3

Tests Passed 30
30

30
30

30
30

30
30

0
30

0
30

153K
153K

0
153K

153K
153K

Number of Bugs 0 0 0 0 4 4 0 1 0

N-mode Tests TA: 3, QA: 3 TA: –, QA: 7 TA: –, QA: 3

Module
Data Hashing K-Anonymization

V1 V2 V3 V1 V2 V3

Tests Passed 41K
41K

41K
41K

0
41K

0
210

210
210

210
210

Number of Bugs 0 0 1 1 0 0

N-mode Tests TA: –, QA: 3 TA: –, QA: 3

Table 6.1 – Evaluation results of strict modules under total agreement (TA) and
quorum agreement (QA) decision policies with the output defined as correct
(3), incorrect (7), or silent (–).

down into partitions satisfying the K-anonymity factor for the quasi-identifiers
inputted. The testing tool features 210 tests. These tests comprise tuples
〈dataTuples, k, qids, result〉, where dataTuples are statically grouped in 5
files each comprising 1 million entries, and k and qids are automatically gen-
erated and increased anonymity factors and quasi-identifiers respectively.

6.4.2 Main findings

Table 6.1 summarizes the N-version study results, where V1, V2 and V3 cor-
respond to three different version implementations. We highlight three main
findings. These results show, on the one hand, whether each single imple-
mentation has passed all the verification tests, and on the other hand, whether
multiple implementations successfully passed the tests when executed in N-
version mode according to two possible decision policies: total agreement or
quorum agreement. We highlight three main findings.

First, under the TA decision policy, only the image blurring module yields
an output. This is possible because all unit implementations passed the 30
tests. Since they produced the same result, the TA policy concurs on out-
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putting the same result. This finding is consistent with the lack of bugs found
in the code which could compromise the resulting output. For the remaining
modules, however, faults have caused some versions to fail individual tests
thus undermining the overall result.

Second, under the more relaxed QA decision policy, we observe that four
modules can successfully reach a consensus and produce an output: the image
blurring module—whose individual implementations output consistent results—
and three additional modules in which two out of three implementations gen-
erate the same result, thereby allowing a consensus to be reached. In these
cases, functional divergence occurred due to the existence of bugs. In the data
encryption module, we identified a bug in V2 that consisted of a wrong value
swap between two variables. Regarding the data hashing module, we detected
one bug in V3 which was later found to be a variable poorly initialized. In
the K-anonymization module, V1 contained a coding error stemming from a
wrong pseudocode interpretation of the scope of a variable. Specifically, a
global variable used by several functions was supposed to be initialized in a
certain function, but V1’s developer declared the variable as local to that func-
tion, leading to issues in the other functions handling it. Lastly, in one case, the
voice scrambling module produced an incorrect response under QA. This hap-
pened because two versions, namely V2 and V3 experienced the same 4 bugs
each. More specifically, the bugs originated from the wrong interpretation of a
loop upper bound.

Given these numbers, we conclude that when versions yield different re-
sults, NVP actually detects (except for side-channels) implementation devia-
tions created with rational intent. The exception being when the majority of
the versions output the same erroneous result. Although this happened in the
case of the voice scrambler module test, in practice it is not likely to happen
since faulty module units will be rejected during the testing stage of the mod-
ule’s lifecycle. Accidental mistakes can cause a reduction in the utility of the
module. If a very conservative decision policy is employed (TA) this loss will
be considerable (up to 80%). On the other hand, under QA, the utility drop is
smaller, as four out of five modules can still produce the same result.

The influence of bugs or intentional specification violation can be mini-
mized or completely eliminated with the extensive testing of all the versions
before they are incorporated as modules’ units. Similar approach is used in
open-source communities, e.g. Debian, where new applications’ versions go
through several testing stages before making their way to the stable OS release.
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6.5 Impact of module incoherence

This section studies the impact of units incoherence on the modules’ overall
behavior and utility. For our study, we implement test loose modules which do
not follow the same specification, yet implement the same high level function:
face recognition and speech recognition.

The module implementing the face recognition element uses three exist-
ing open source face recognition libraries as building blocks: OpenCV (with
Face module) [58], OpenBR [143], and OpenFace [29]. The libraries code
remained unchanged but was wrapped around the N-version module’s API.
Based on these libraries, we defined several module configurations. We tested
the effectiveness of the face recognition module when trained with a training
set of 2250 images and a testing set of 250 images. In total, we trained the
recognition of 250 different people with 9 pictures each. All these images
where extracted from the UFI dataset [154]. Microsoft Face API was used as
state of the art face recognition implementation. It was trained and tested using
the same dataset.

The speech recognition module uses three independent speech recognition
libraries—Sphinx [151], Julius [153], and Kaldi [184]—and was also tested
in different module settings. Every configuration was exercised with 130 sen-
tence tests from CMU’s AN4 speech recognition dataset [119]. AN4 features
almost 50 minutes of speech with both male and female speakers, in a total of
948 utterances averaging 3 seconds in duration each. As with face recognition
libraries, we developed an API wrapper for all the speech recognition libraries.
We use Google Speech API as state of the art speech recognition system which
requires no training.

6.5.1 Face recognition module study

Table 6.2 presents the success rate of our tests for the three face recognition
versions evaluated individually, and the representative three module configu-
rations, namely total agreement, quorum agreement and an intersection of the
two versions that showed the best recognition results.

The first important observation is that the efficacy of the open source li-
braries is smaller than Microsoft Face’s, which reaches 99% success rate.
OpenCV stands out as the least effective library (only 62% success rate). The
difference between OpenCV and OpenBR stems from the algorithms they im-
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OpenCV OpenBR OpenFace MS Face API

Recognition
3 156 (≈62%) 219 (≈88%) 228 (≈91%) 249 (≈99%)

7 1 (≈1%) 1 (≈1%) 0 (0%) 0 (0%)

No Recognition 93 (≈37%) 30 (≈11%) 22 (≈9%) 1 (≈1%)

Total 250 (100%) 250 (100%) 250 (100%) 250 (100%)

Decision Policy

Total Agreement OpenFace ∩ OpenBR Quorum Agreement

Recognition
3 137 (≈55%) 202 (≈81%) 220 (88%)

7 0 (0%) 0 (0%) 1 (1%)

No Recognition 113 (≈45%) 48 (≈19%) 29 (11%)

Total 250 (100%) 250 (100%) 250 (100%)

Table 6.2 – Success rates of face recognition measured in correct (3), incorrect
(7) and no recognition.

plement, namely Eigenfaces and 4SF respectively. The small difference be-
tween OpenBR and OpenFace comes as a surprise, given that OpenFace im-
plementation uses neural networks for face recognition, theoretically more ef-
fective than OpenBR’s 4SF.

Table 6.2 then shows the success rate for three face recognition module
configurations. Configuration total agreement consists of a module that em-
ploys all three libraries—OpenCV, OpenBR, and OpenFace—and yields “suc-
cess” if and only if all libraries identify the same individual. We can see that the
face recognition accuracy drops considerably to only 55%, which is explained
by the significant differences that exist between the algorithms implemented
by each library.

In a second configuration, we used only two libraries – OpenFace and
OpenBR – and in this case the success rate increased substantially to 81%.
The best results were achieved when we used three libraries side by side, but
with a merging policy function that outputs success every time at least two
libraries produce the same results. In this particular configuration (quorum),
the success rate reaches 88%, which represents a reduction of only 3% when
compared to OpenFace alone.
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Implementation Sphinx Julius Kaldi Google

Sentence Match 20
130 (≈15%) 36

130 (≈28%) 88
130 (≈68%) 103

130 (≈79%)

Word Intersection 578
902 (≈64%) 570

902 (≈63%) 719
902 (≈80%) 722

902 (≈80%)

Table 6.3 – Speech recognition confidence.

Considering these results, we argue that the best mechanism in merging
face recognition results in an N-version setting is to gather the majority of
the results given by a module’s units. Note, however, that result intersection
is not always a sound solution. If we consider the case where a module has
fewer honest units than intentionally ineffective ones, e.g., units that produce
wrong results with the goal of preventing face recognition, then the success
and consequent effectiveness of the module is compromised. To address this
issue, we believe a reputation based approach for unit selection could be used.

6.5.2 Speech recognition module study

Although, word error rate (WER) is the metric generally used to measure the
accuracy of speech recognition, it cannot be applied to the situation where
there are multiple recognition results. Moreover, in a smart home scenario,
voice commands can still be interpreted correctly even if some words are not
recognized or come in a wrong order. We, therefore, opted for a sentence
match and word intersection merging functions as the main performance pa-
rameters for speech recognition modules.

Table 6.3 shows the results for each library evaluated based on two criteria:
sentence match and word intersection. Sentence matching consists of the exact
match between the entire original sentence and the recognized result returned
by each library. Word intersection counts the number of words that exist in the
original sentence and are also present in the recognition results returned by the
library (902 is the total number of words present in all sentences). Across both
these dimensions, Sphinx and Julius clearly fall behind Kaldi, which offers the
highest success rates (68% sentence match and 80% word intersection). At the
same time, Kaldi’ numbers are not far off Google Speech’s.

Table 6.4 lists multiple module configurations that we used to produce
speech recognition units based on these libraries. Each entry of the table cor-
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Decis. Policy TA Sphinx ∩ Julius Sphinx ∩ Kaldi Julius ∩ Kaldi QA

Sent. Match 13
130 (≈10%) 13

130 (≈10%) 19
130 (≈15%) 34

130 (≈26%) 40
130 (≈31%)

Word Inters. 455
902 (≈50%) 455

902 (≈50%) 554
902 (≈61%) 557

902 (≈62%) 666
902 (≈74%)

Word Union 753
902 (≈83%) 706

902 (≈78%) 745
902 (≈83%) 735

902 (≈81%) 753
902 (≈83%)

Table 6.4 – N-version speech recognition confidence.

responds to a specific module configuration. The columns indicate which li-
braries constitute the units of the module, and the lines indicate the merging
function that was used to produce a successful speech recognition output. We
adopted three merging approaches: sentence match, which is similar to the cri-
teria used for the individual solutions and issues an output if all units identified
the same sentence; word intersection, which returns only the words that all
units identified successfully; and union, which returns the union of all words
identified by all units.

As shown in Table 6.4, sentence match tends to yield very poor results,
displaying a success rate between 10% and 26% between any pair of units.
Even when we consider quorum agreement, i.e., when at least two out of three
units return the same result, the success rate only reaches 31%, which is very
far from Kaldi’s 68%. Still, given that most voice controlled devices, e.g.,
Amazon Echo, use a grammar based approach, in which they ask users to
repeat unrecognized words, exact sentence match is an unreasonable metric.

With word intersection, the results improve significantly up to 62% be-
tween any pair of units, and up to 74% when we consider the quorum for
the results produced among them. Because of the intersective nature of the
merging functions sentence match and word intersection, the adoption of an
increasing number of units does not necessarily yield better results. This hap-
pens because the overall success rate is always bound to the performance of
the worst unit. This can be seen in the last column of the table. For instance,
although the pair Julius and Kaldi yields a 62% success rate for the word inter-
section function, the addition of Sphinx bounds the three units overall success
to the result yielded by the worst Sphinx pairing result, i.e., the result of the
pair Sphinx and Julius (50%). The table also shows that for this type of func-
tions the best approach is to use a quorum policy, i.e., the consensus between
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at least two units, which yielded success rates of 31% and 74% for sentence
match and word intersection respectively.

Overall the highest success rate is achieved when word union is employed.
As can be seen in the table, the function word union yields success rates of at
least 78%, and 83% in the best case, surpassing even Google Speech. Contrary
to sentence match and word intersection, the success rate of this function is the
same for the combination of all three units and the quorum consensus (83%).
This happens because quorum also implies the output of all three units. As a
result, both functions produce the same output.

Still, we argue that union is not a fair result merging function for two rea-
sons. On one hand, semantically, the union of the output of two or more speech
recognition units may differ significantly from a speech recognizer expected
result. On the other hand, this union function can potentially endanger the pri-
vacy of the user. For instance, as long as there is one rogue unit that extracts
information from the audio source, e.g., a voice detector that derives the num-
ber of people in the room based on the background sound, the whole module
could be compromised, as its result would feature that information.

Finally, we can make three conclusions: (1) exact sentence match is a poor
N-version result merging function for a speech recognition case, (2) word inter-
section recognition success rates are limited by the worst unit, but are reason-
able when used in a quorum consensus approach, and (3) although word union
success rates are the highest among the configurations studied, its semantics
and privacy limitations render it unusable in merging N-version results.

Consequently, we argue that quorum-based word intersection is the best
approach of the three in merging this type of results. Similarly to the face
recognition case, it can also be complemented with a reputation based ap-
proach, in order to address the issue of the intentionally ineffective sub-modules.

6.6 Performance evaluation

This section aims at assessing the performance overhead introduced by our
proposed N-version approach as opposed to running a single instance of an
element implementation. Specifically, we present performance measurements
for both strict and loose modules, as well as the performance of the result
merging approaches used.
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Figure 6.3 – Strict modules performance

6.6.1 Experimental methodology

The performance evaluation comprises the execution time measurements of
each of the aforementioned N-modules. These measurements feature the ex-
ecution time of each individual modules’ units, and the execution time of the
quorum and total agreement merges. Each of these measurements consisted of
computing the average of 50 tests, each with the same input. More specifically,
we chose a 1280x720 pixel image and a factor of 2 for the image blurrer; a 10
second voice clip for the voice scrambler; a randomly generated 256-byte key
and 1MB plaintext for the data encryption module; 1MB worth of randomly
generated text for the data hashing module; and a set of 100000 tuples and a
K-anonymity of 500 for the K-Anonymization module. For the face recogni-
tion module, we provided a training dataset of 150 pictures of three different
people, and an additional picture as test input; and for speech recognition,
we provided a general acoustic and custom language models as knowledge
base, and a voice clip as input. The experiments were conducted on a laptop
equipped with an Intel i3-3217U 1.80GHz CPU and 4GB of RAM.

6.6.2 Main findings

Figures 6.3 and 6.4 present the performance results for strict and loose mod-
ules respectively. For a matter of consistency, we use the TA policy as base-
line. Note that the most significant performance differences among the dif-
ferent strict modules’ units relate to either ineffective loop implementations,
or recurrent use of data type casts. However, for the loose modules, the main
performance difference stems from units’ underlying algorithms diversity and
efficiency of their implementations.
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Figure 6.4 – Loose modules performance

The first finding is the confirmation that the parallel execution nature of our
approach bounds the two merging approaches’ execution times to the slowest
unit’s execution time. This is most evident for the strict K-anonymization V3
unit. For loose modules the difference between unit execution times is even
more noticeable. For the speech recognition module, V1’s execution took a
quarter of the time needed to execute V3. The same is observed for the face
recognition module, where V3 outperformed V2.

Secondly, there is a significant execution time difference between loose
module units. Note again that loose modules rely on heterogeneous versions.
As a result, the underlying algorithms of units and their complexity may vary,
leading to performance differences. Unlike strict modules, where the perfor-
mance of units is usually similar, the impact of the slowest units on loose
modules’ performance is higher.

The third finding relates to the cost of the merging approaches. While
we defined the TA policy as baseline to compare the performance of the three
units and merging approaches, we can see that quorum agreement is sometimes
more expensive than total agreement. This happens because, total agreement
implies at most two comparisons, i.e., between V1 and V2, and between V2
and V3, while quorum agreement, in the worst case, requires three compar-
isons to yield a result. On the other hand, in the best case, quorum agreement
can be achieved with one comparison only.

6.7 Discussion

Traditionally, NVP has raised two main objections. First, N-version is re-
garded as a technique demanding significant human resources to implement
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the N different software versions. However, considering our targeted scenario,
this concern may be alleviated by relying on open source communities for the
development of TE implementations. In fact, such communities have shown
good results in maintaining large scale projects, e.g., Debian packages, python
modules, and IoT specific ones, e.g., apps and automation recipes.

A second objection to NVP is the connotation of poor failure diversity
among independent versions. With this respect, it has been shown [144] that
statistically, the number of common errors is relatively low and the diversity
of implementations makes the overall system robust to failures. Therefore, it
is hard for an adversary to exploit a common flaw across all the N-version
modules. Although at a small scale, our software flaw study seems to confirm
this idea, since in five different TEs, common flaws occurred only once. Even
so, although this occurrence was detected by simple debugging tools, another
reason behind it could be our specification effectiveness, which was not experi-
mentally tested. Nevertheless, NVP considerably raises the bar for adversaries
since the number of latent vulnerabilities would be smaller compared to single
version executions.

Our approach’s open source nature may also hinder TE utility, as the num-
ber of naive or malicious TE units outputting incorrect results may be higher
than that of correct units. We propose two approaches to address this issue.
First, a TE developer reputation scheme could provide insights regarding the
effectiveness and quality of a TE unit. This information could then be used to
filter unwanted units when packaging modules. Second, at least for loose mod-
ules, their effectiveness could benefit from commercial software, which from
our experience, requires little adaptation effort with our approach. Similarly to
app markets for popular smartphone platforms, such approach may introduce
the required diversity of the implementations and open a way for developers to
get rewarded for their efforts.

Performance wise, the QA policy’s positive results seem to suggest that the
impact of the slowest unit for both loose and strict modules can be eliminated
by taking advantage of unit redundancy. Instead of waiting for the slowest
unit to finish, the decision block may process unit outputs up until a majority
is formed. This approach addresses the performance problem and provides a
reasonable tradeoff between module performance and user privacy.

As for malicious behavior it is not in our scope to prevent malicious ap-
plication attacks. This holds true for both attacks targeting system security
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mechanisms, e.g., sandboxing, and TE module security, e.g., bug exploitation
by sending crafted inputs to modules. Nevertheless, to address TE module
security, our design could be complemented with unit address space random-
ization techniques [77].

Another attack our approach does not prevent is a DoS in which a mali-
cious version of a given N-version module consistently outputs incorrect re-
sults thus affecting the overall result. However, such an attack could be easily
eliminated by detecting and replacing a faulty version with another one.

6.8 Related work

NVP [70] has originally been introduced to reduce the likelihood of error and
bugs in the software development. Multiple independent teams of program-
mers developed several versions of the same software and then ran these imple-
mentations in parallel. The diversity of the implementations helped to survive
some of bugs introduced during development and as a result improve overall
reliability and fault-tolerance of the software. Since then, NVP has been used
in several fields.

Software maintenance: Veeraraghavan et al. [215] proposed multiple replicas
of a program to be executed with complementary thread schedules to identify
and eliminate data race bugs that can cause errors at runtime. DieHard [50]
used randomized heap memory placement for each replica to protect the soft-
ware from memory errors, e.g. buffer overflow or dangling pointers. Imamura
et al. [131] applied N-version programming in the context of genetics to re-
duce the number and variance of errors produced in genetic programming.
Some systems [63, 110], applied N-version to the process of updating soft-
ware, in order to detect and recover from errors and bugs introduced by the
new versions. While these approaches consider only one developer of multiple
software versions, we assumed multiple independent developers and versions.

CloudAV [172] provided antivirus capabilities as a network service and
leveraged NVP to achieve better detection of malicious software. However,
nothing prevented it from exploiting private user data. Demotek [115] em-
ployd N-version to enhance the reliability and security of several components
comprising an e-voting system. Still, it assumed the modules were honest, and
its main goal was to make it difficult for an attacker to compromise the whole
system. Overall, none of the aforementioned systems relied on N-version to
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bootstrap trust in system components, focusing instead on improving individ-
ual modules’ reliability and availability.

Attacks detection: Additionally, NVP has been used to detect and prevent
system security attacks such as inadvertent memory access [77, 194]. This,
however, required a custom memory allocation manager and modifications to
the OS kernel. Moreover, these systems trusted multiple versions of the same
software and assumed only the input data to be potentially malicious. In our
case the input is by default trusted since it consists of the sensor data collected
by the smart home devices. The implementations of various N-version com-
ponents are, however, untrusted and may act maliciously.

Privacy protection: NVP has also been leveraged to ensure personal infor-
mation confidentiality and prevent information leaks. Most of these systems
employed techniques in which two replicas of the same software were executed
with different inputs [226], under different restrictions [65] or on different se-
curity levels [84]. To the best of our knowledge, our work is the first to study
the feasibility of NVP in securing IoT platforms.

6.9 Summary
Dataflow element-based programming model is an essential part of all three
systems we have described in the previous chapters. It relies on a rich set
of trusted API elements which can be used to build IoT apps. These trusted
elements are expected to operate correctly and perform a desired function, be it
speech recognition or object detection. The whole trust model depends on the
trustworthiness of these trusted elements. However, considering that they are
provided and maintained by the open community of developers, ensuring trust
in the elements’ implementations becomes a challenging task. In this chapter,
we looked into one way to bootstrap trust in these elements.

By using an N-version programming approach multiple versions of the
same element provided by independent developers run side by side to pro-
duce a final result. The final result is calculated based on the total or quorum
agreement between the individual versions’ results. As long as the majority of
versions agree on the same results, we can ensure the correct behavior of the
trusted element. Even if there is one malicious element implementation, try-
ing to exfiltrate sensitive sensor data, it will not succeed since its actions and
results will be in contrast to the results of the other legitimate implementations.
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We performed an in-depth study of NVP ability to protect the privacy of
sensor data in IoT environment. The results were quite encouraging, showing
that NVP can be viable option provided that the developers of different ver-
sions do not collude. We determined that the selected decision policy plays an
important role in NVP module’s performance and the quality of the final mod-
ule’s results. While for some strictly-specified modules, the decision policy
expects at least the majority of the results to have an exact match, for loosly-
specified modules the decision policy must be relaxed to accommodate for
potential results divergence. Performance-wise the quorum agreement policy
proved to be the most efficient one since it allowed to converge on the final
result without waiting for all module’s versions to finish processing. With its
little impact on user experience this policy can be effectively used in IoT apps.

In the next chapter we will look into another way to provide privacy and
security guarantees in the IoT environment. This time, however, we will con-
centrate on the IoT devices’ software components and their ability to withstand
fault-injection attacks. Such attacks aim to modify the expected software be-
havior by strategically placing a fault in its execution context. The fault itself
can be as simple as a bit flip or a more complicated as the one changing the
target of a particular branch instruction to a different value. In both cases,
the resulting software can either crash and fail to operate normally, or, what
is worse, perform an unexpected and highly undesirable action, e.g. transmit
sensor data in plaintext or leak an encryption key. We will review common
software hardening techniques that aim to detect and prevent fault-injection
attacks and evaluate their efficiency and performance impact.



Chapter 7

IoT software hardening analysis

7.1 Introduction

Millions of people worldwide use Internet of Things (IoT) devices, such as
smart lights, door locks and watches, to enhance their households and have
more control over their daily lives. The nature of the data these devices operate
with is extremely personal and sensitive, ranging from door lock state updates
to heart rate measurements. In order to preserve the end-users privacy, these
devices usually encrypt the data before transmitting it (e.g., to a local hub,
mobile phone or cloud server). However, a single fault in the encryption logic,
introduced either accidentally (e.g. electromagnetic glitch) or intentionally by
a malicious attacker, may cause sensitive data leaks (see Figure 7.1).

To make the devices more resistant to faults, IoT device manufacturers
may choose to harden the software components by adding a safety logic, that
aims to detect the presence of faults and minimize their impact. The hardening
can be applied to a hardware on which a given software runs [207] or to the
software itself [107, 182]. While there is a variety of hardening techniques, in
practice, IoT software developers rarely have a clear understanding of the real
impact of a chosen hardening technique on their software’s fault-tolerance and
performance. In fact, some of the hardening techniques may have a negative
impact and actually increase the software vulnerability [166, 196, 201].

In this chapter, we present a thorough analysis of five common software-
based hardening techniques applied to an implementation of PRESENT – a
lightweight block cipher intended to be used in low-power resource-constrained

119
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Figure 7.1 – Heart rate monitor operation in normal mode and under attack.

IoT devices. We evaluate the effectiveness of the hardening techniques on
three fronts: (1) we start from evaluating their ability to prevent sensitive data
leaks in presence of faults; then, (2) we study their general fault-tolerance and
analyze the impact of each fault type; finally, (3) we measure the impact of
hardening techniques on software performance and binary size.

To facilitate the analysis we have developed Chaos Duck – a tool for auto-
matic software fault-tolerance evaluation. Without any intervention from the
developer Chaos Duck injects faults in a given software and evaluates their im-
pact on security and performance. It supports six different fault types ranging
from bit flip to branch faults, and explores all the possible fault locations.

7.2 Case study: PRESENT
Securing IoT devices is necessary now that more and more of those are being
used in private, secure, or mission critical environments. This section intro-
duces PRESENT, the encryption algorithm used as the case study in this work.

PRESENT [55] is a block cipher that was specifically developed for low-
power resource-constrained IoT devices, that due to their hardware constraints
cannot use conventional AES cipher. In our case study, we use a canonical
size-optimized version of PRESENT implemented in C with an 80-bit key1.

A high-level overview of PRESENT algorithm and how it is used in a heart
rate monitor is shown in Listing 7.1. Each of the 31 encryption rounds consists

1http://www.lightweightcrypto.org/implementations.php
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1 encrypt(state,key) {
2 int round = 0;
3 while(round < 31) {
4 addRoundKey(state,key);
5 sBoxLayer(state);
6 pLayer(state);
7 round++;
8 }

9 addRoundKey(state,key);
10 }
11 reportcycle() {
12 state = sense();
13 key = {0xd3, 0xe4 ... 0xba};
14 encrypt(state,key);
15 transmit(state);
16 }

Listing 7.1. A pseudocode of a heart rate monitor’s software using PRESENT.

of an XOR operation to introduce a round key using S-box and permutation
layers. After that, an additional operation performs a final key XOR.

A heart rate monitor runs a regular report cycle during which it obtains a
new heart rate value (i.e. state), encrypts it with a hardcoded key and transmits
it to an external receiver (e.g., a mobile phone).

7.3 Fault injection attacks
IoT devices are often exposed to fault injection attacks that aim to challenge
device robustness and security [126, 103]. This section overviews how such
faults can occur and characterizes them with fault models used in this work.

Fault injections can be achieved by introducing faults either via hardware
[123, 140, 148] or software [118, 134]. The impact of a fault on the device’s
behavior varies considerably, ranging from no effect, to software crashes, or
security vulnerabilities. For instance, a simple power drop, i.e. a glitch, may
cause data corruption or loss. Similar glitches may result in a weaker data
protection by disrupting the encryption logic of the device firmware.

In this work we focus on faults that may introduce a security vulnerability
in the device software causing the leakage of information that was meant to
be secret. These faults are particularly dangerous when injected in software
components implementing encryption algorithms.

To illustrate a fault injection that leads to a vulnerability, consider the as-
sembly code shown in Figure 7.2. This code was generated by compiling the
C implementation of PRESENT for the ARM architecture. A while loop ex-
ecutes 31 rounds of encryption checking the value of the round variable at
each round, as shown in Listing 7.1. A check for round < 31 is performed
at address c34, followed by a conditional branch instruction at c38 which
restarts the loop if the condition holds. Otherwise, the execution continues to
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00000668	<encrypt>:
	*/	...	/*
					while(round<31)	{
	718:		ea000144		b				c30	<encryption+0x5c8>
	71c:		e3a03000		mov		r3,	#0
	*/	...	/*
								round++;
	c24:		e55b3007		ldrb	r3,	[fp,	#-7]
	c28:		e2833001		add		r3,	r3,	#1
	c2c:		e54b3007		strb	r3,	[fp,	#-7]
				while(round<31)	{
	c30:		e55b3007		ldrb	r3,	[fp,	#-7]
	c34:		e353001e		cmp		r3,	#30
	c38:		9afffeb7		bls		71c	<encryption+0xb4>
				}
				addRoundKey(state,key);
	c3c:		e3a03000		mov		r3,	#0
	c40:		e54b3005		strb	r3,	[fp,	#-5]
	*/	...	/*

00000668	<encrypt>:
	*/	...	/*
					while(round<31)	{
	718:		ea000144		b					c30	<encryption+0x5c8>
	71c:		e3a03000		mov			r3,	#0
	*/	...	/*
								round++;
	c24:		e55b3007		ldrb		r3,	[fp,	#-7]
	c28:		e2833001		add			r3,	r3,	#1
	c2c:		e54b3007		strb		r3,	[fp,	#-7]
				while(round<31)	{
	c30:		e55b3007		ldrb		r3,	[fp,	#-7]
	c34:		e353001e		cmp			r3,	#30
	c38:		9affffff		bls			c3c	<encryption+0x5d4>
				}
				addRoundKey(state,key);
	c3c:		e3a03000		mov			r3,	#0
	c40:		e54b3005		strb		r3,	[fp,	#-5]
	*/	...	/*

ARM assembly code (extract) ARM assembly code with branch fault at 0xc38

Figure 7.2 – Example of a branch instruction fault attack.

the next instruction at c3c and runs a final key XOR. A specific fault injection
could modify this last branch instruction to alter the function behavior. For
instance, by changing the target of a branch instruction at c38 from 71c to
c3c the function will perform just 2 rounds of encryption leaving the program
vulnerable to a differential key recovery attack [53]. Similar faults may cause
a program to skip the encryption procedure entirely by modifying the target of
other branch instructions.

Injecting faults via hardware is relatively difficult and requires expensive
specialized hardware [44, 164]. The reproducibility and accuracy of such in-
jections can be low depending on the fault type. Injecting faults on a software
level requires fewer resources and offers higher accuracy. We therefore con-
centrate on software fault injection which allows us to simulate faults at the
exact locations of a program’s binary. By inspecting all the potential fault lo-
cations and analyzing their impact on program behavior we can measure the
program’s fault tolerance. Below we outline the faults considered in our study.

Branch faults: The goal of branch instruction faults (both unconditional B
and conditional BC) is to disrupt the control flow graph of a given program in
a way that is beneficial for an attacker (e.g., skip the encryption or fault detec-
tion logic). This can be achieved by modifying the target addresses of branch
instructions to point to different locations in the program’s address space.

Bit flip faults: The FLP fault operates on instruction bits and simulates flip-
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ping a single bit. This type of fault often occurs naturally (due to radiation
or electromagnetic activity) or can be injected manually using specific soft-
ware [142, 189].

NOP faults: The NOP faults replace an instruction at a given address with
a nop instruction, effectively skipping the replaced instruction. This kind of
modification may lead to small affects like skipping a variable assignment, or
more serious ones like skipping a function call.

Zeroing faults: The Z1B and Z1W faults set a single byte or word respectively
to zero. This kind of faults is more likely to be related to hardware effects like
an EMP of the memory or bus, and is most effective when targeting values
used in program logic, e.g. the number of encryption rounds [105, 113].

7.4 Hardening techniques

One approach to address fault injection vulnerabilities is to use various harden-
ing techniques that aim to detect and minimize the consequences of incorrect
program behavior. Hardening techniques may be implemented either via hard-
ware [207, 212], software [107, 182], or both [197]. In this work, we focus on
software hardening techniques that allow us to detect the faults at runtime and
prevent erroneous program execution. To this end, we selected five state-of-
the-art techniques commonly used to harden the software implementations of
cryptographic algorithms in embedded systems [45, 208].

Below we outline the key concepts of these techniques applied to the im-
plementation of PRESENT as illustrated in Listing 7.1. For extensive discussion
of each, we refer to the cited works.

Classic Loop Hardening (CLH). This technique has been widely discussed
[43, 57, 71, 80, 88, 186] and relies on duplicating the loop iteration counters
and exit conditions forcing a second check at loop exit (see Listing 7.2). The
rationale behind this technique is as follows: if an injected fault corrupts the
main loop counter the duplicated counter will still hold the correct value and
will signal an error on exit condition check. We extend this technique further
by once again verifying all the duplicated loop counters at the end of each code
block. This is particularly important in case of block cipher implementations
that often include functions consisting of multiple for or while loops.
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1 encrypt(state,key) {
2 int round = 0, round_dup = 0;
3 while((round < 31) &&
4 (round_dup < 31)) {
5 addRoundKey(state,key);
6 sBoxLayer(state);
7 pLayer(state);
8 round++; round_dup++;
9 }

10 if (round!=round_dup) error();
11 addRoundKey(state,key);
12 }

Listing 7.2 – Classic loop hardening
(CLH) technique.

1 encrypt(state,key) {
2 int round = 0, round_dup = 0;
3 while(round < 31) {
4 addRoundKey(state,key);
5 sBoxLayer(state);
6 pLayer(state);
7 if(round!=round_dup)error();
8 round++; round_dup++;
9 }

10 if (round!=round_dup) error();
11 addRoundKey(state,key);
12 }

Listing 7.3 – Variable duplication
(VD) technique.

Variable Duplication (VD). This technique implements redundancy on vari-
able level [71, 190]. Each variable is duplicated and both copies are modified
in the same manner (see Listing 7.3), i.e. every write operation performed
on the original variable is also performed on its copy. At each read opera-
tion the copies are compared for consistency: if the values do not match an
error is raised. Unlike the CLH technique which concentrates on loops and
only checks the counter variables once, VD performs this check every time
any variable is updated or used in conjunction with another variable.

Statement Counters (SC). This hardening technique (with minor alterations)
has been previously proposed by several authors [27, 71, 150, 175]. It relies
on counters that are incremented and checked against the expected value af-
ter executing each source code block (i.e. a function, a loop, or even a single
statement). This allows detection of attacks that disrupt control flow of the
program, e.g., by modifying the target of branch instructions, since the mali-
ciously modified branch target would be executed in the unexpected order. We
implement the variation of this technique proposed by Lalande et al. in [150]
which suggests a per-statement counter granularity for a better CFG control
(see Listing 7.4). In this case, the attack will be detected if any of the two adja-
cent statements in the source code are not executed in the right order. There are
also additional counters for function calls, for / while loops or if / else blocks.

Function Duplication (FD). With this technique all the sensitive program
functions are duplicated and operate on the same inputs, but their outputs are
stored in different variables [42] (see Listing 7.5). These variables are com-
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1 #define DECL_INIT(cnt,x) int cnt; if((cnt=x)!=x) error();
2 #define CHK_INC(cnt,x) cnt=(cnt==x ? cnt+1 : error());
3 #define RESET_CNT(cnt_while,val) (cnt_while==1||cnt_while==val) ?
4 cnt_while=1 : error();
5 #define CHK_LOOP_INC(cnt_loop,x) (cnt_loop==x)?cnt_loop+=1:error();
6 #define CHK_LOOP_END(cnt_loop,val) if (cnt_loop!=val) error();

7 encrypt(state,key) {
8 DECL_INIT(enc_cnt,1);
9 CHK_INCR(enc_cnt,1);

10 int round = 0;
11 CHK_INC(enc_cnt,2);
12 DECL_INIT(while_cnt,1);
13 CHK_INC(enc_cnt,3);
14 DECL_INIT(loop_cnt,0);
15 CHK_INC(enc_cnt,4);
16 while(round < 31) {
17 RESET_CNT(while_cnt,6);
18 CHK_LOOP_INC(loop_cnt,round);
19 CHK_INC(while_cnt,1);
20 addRoundKey(state,key);

21 CHK_INC(while_cnt,2);
22 sBoxLayer(state);
23 CHK_INC(while_cnt,3);
24 pLayer(state);
25 CHK_INC(while_cnt,4);
26 round++;
27 CHK_INC(while_cnt,5);
28 }
29 CHK_INC(enc_cnt,5);
30 CHK_LOOP_END(loop_cnt,31);
31 CHK_INC(enc_cnt,6);
32 addRoundKey(state,key);
33 CHK_INC(enc_cnt,7);
34 }

Listing 7.4. Statement counters (SC) technique.

1 reportcycle() {
2 state = sense();
3 key = {0xd3, 0xe4 ... 0xba};
4 for (int i=0; i<8; i++) {
5 copy[i] = state[i];
6 }
7 encrypt(state,key);
8 encrypt_dup(copy,key);
9 for (int i=0; i<8; i++) {

10 if(state[i]!=copy[i])error();
11 }
12 transmit(state);
13 }

Listing 7.5 – Function duplication
(FD) technique.

1 reportcycle() {
2 state = sense();
3 key = {0xd3, 0xe4 ... 0xba};
4 for (int i=0; i<8; i++) {
5 copy[i] = state[i];
6 }
7 encrypt(state,key);
8 decrypt(state,key);
9 for (int i=0; i<8; i++) {

10 if(state[i]!=copy[i])error();
11 }
12 transmit(state)
13 }

Listing 7.6 – Decryption at place
(DaP) technique.

pared on function exit: if the resulting values are different a program throws
an error. The technique can be further improved by changing the logic of the
duplicated function so that the same fault could not be effectively used twice.

Decryption at Place (DaP). This technique is a variation of FD and specif-
ically targets implementations of encryption algorithms. After encrypting a
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given plaintext a resulting cipher is sent to a decryption function and its out-
put is compared with the original plaintext (see Listing 7.6). If the encryption
(or decryption) function was corrupted the resulting comparison would fail. A
determined attacker would then need to corrupt the decryption function in the
same way or attack the part of the program responsible for result verification.

7.5 Chaos Duck
In this work, we considered fault injection on the binary level, as this reflects
the realities of fault injection on an IoT device. Some faults require care in
their injection, e.g. branch faults (B or BC), while others, e.g. bit flip faults
(FLP), can be injected into any part of the binary.

To assist in finding and applying fault injection, we developed and here
introduce Chaos Duck – an automatic fault-injection tool that is agnostic to
the binary implementation. The only assumption Chaos Duck makes is that a
binary was compiled for a specified processor architecture.

Strategically injecting faults. Chaos Duck disassembles a given binary and
parses its assembly code collecting information about the instructions set (e.g.,
address space and size), branch instructions locations and their targets, initial-
ization of static variables and their corresponding values. This information is
later used to produce faulted binaries with injected faults.

For branch faults (B or BC), Chaos Duck modifies the target of a branch
instruction to point to a different location. A new target address is picked se-
quentially within the program’s text section including addresses in the middle
of a valid instruction. For each branch instruction in the original binary multi-
ple faulted binaries are produced with a different target address.

For NOP faults Chaos Duck checks all the possible outcomes by replac-
ing each original instruction with a nop instruction sequentially. The same
approach is used for FLP faults for each instruction bit.

Chaos Duck looks for variable declarations that have a numeric value of up
to four bytes and ‘zeros’ them with Z1B or Z1W faults producing a new faulted
binary. This fault type targets variables controlling the number of encryption
rounds or loop counters.

Evaluating outcomes. Depending on the injected fault the resulting binary can
behave differently during the execution. Some faulted binaries may produce
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a result that was not expected under normal circumstances, e.g., an invalid
cipher that will be impossible to decrypt. Other faulted binaries may cause a
plaintext or even an encryption key to appear in the output leading to sensitive
data leaks. At the same time, faulted binaries may also terminate abruptly due
to faults in their logic. Some may fail with a segmentation fault or crash with
an error code, while the others might end up in an infinite loop.

Chaos Duck automatically executes all the generated faulted binaries and
collects the results (stdout/stderr outputs, exit codes, and timeouts). It accepts
an encryption key, plaintext and an expected cipher as input parameters. It
then performs several checks on the binary output. First, it checks whether a
plaintext or an encryption key appears in any of the faulted binaries’ outputs.
Second, it checks if the produced cipher (if any) is the expected one. In case
of an invalid cipher, Chaos Duck records the fault’s type and an error code.

7.6 Methodology

To evaluate the hardening effectiveness we compared six different implemen-
tations of PRESENT: the baseline canonical C implementation with no hard-
ening, and five implementations hardened with techniques described in Sec-
tion 7.4. All the implementations were compiled for the ARM architecture us-
ing the arm-linux-gnueabi-gcc compiler with no optimization (-O0 flag). We
specifically targeted the ARM architecture since most IoT devices are ARM-
based. The resulting binaries accepted a 64 bits plaintext and a 80 bits key as
inputs and output a 64 bits cipher.

With Chaos Duck we applied the faults described in Section 7.3 to the
baseline and hardened binaries and generated faulted binaries, i.e. copies of
the original binary with a single injected fault. For each fault model, every
possible fault location was considered. We used a set of three encryption keys
and three plaintexts resulting in nine executions per binary with a 3 second
timeout for each. We then measured the total number of faulted binaries for
baseline and hardened versions and collected statistics on fault types and their
success rate measured as the number of binaries generating an invalid cipher or
leaking sensitive data samples. The latter served as an indicator of hardening
technique efficiency against fault attacks.

We also analyzed the ability of a non-hardened and hardened PRESENT

implementations to withstand a key recovery attack when combined with a



128 CHAPTER 7. IOT SOFTWARE HARDENING ANALYSIS

cryptanalytical attack (CA). During such an attack the last 31st round of en-
cryption is skipped making it easier to extract the encryption key as part of a
differential fault analysis (DFA) [105, 217]. We simulated this attack by man-
ually setting the rounds number to 30 and recording the resulting ciphers for
all key,plaintext pairs. We then checked whether any of these ciphers appeared
consistently in the outputs of hardened and non-hardened faulted binaries.

Finally, we measured the average execution time for baseline and hardened
binaries across 10000 executions with randomly generated key,plaintext pairs
and with the first 200 execution results skipped to avoid caching concerns.
Additionally, we recorded the size in bytes for all binaries.

7.7 Evaluation
We evaluate hardening techniques on three fronts. First, we analyze their over-
all effectiveness in preventing sensitive data leakage, e.g. a plaintext or an
encryption key, in presence of faults. Second, we study their general fault tol-
erance against different types of faults, and analyze the impact of each fault
type. Finally, we analyze the performance impact of each of the hardening
techniques on program runtime as compared with the non-hardened version.

7.7.1 Sensitive data leakage
For each hardening technique we count the number of faulted binaries that
leaked a plaintext or an encryption key in their output (stdout or stderr). Each
leak type is presented in two categories: normal faulted binary execution and
an interrupted faulted binary execution based on a 3 sec timeout (marked with
‘timeout’). In case of the latter, the output of is a (potentially) non-terminating
stream of bytes which may include a plaintext or encryption key.

Table 7.1 features the results of our analysis. We observe that with hard-
ened and non-hardened faulted binaries it is only possible to leak the plaintext,
and never the key, indicating that leaking the key is in general hard to achieve
even for a non-hardened code. We can see that hardening techniques CLH, SC,
FD, and DaP all reduce the number of leaks, while the VD technique is largely
ineffective at protecting against leaks, and instead causes more leaks.

Two faulted binaries of a baseline PRESENT implementation were vulnera-
ble to the DFA attack. Their 31st round of encryption was skipped consistently
for any key,plaintext pair. A bit flip (FLP) fault was the cause in both cases: by
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Baseline CLH VD SC FD DaP

Binaries 1314549 4818348 9267993 52341831 3580380 3902400

Leaked key
(normal/timeout)

0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0

Leaked plaintext
(normal/timeout)

1713 / 180 1449 / 0 3559 / 4 567 / 0 0 / 72 108 / 72

DFA vulnerable 2 / 0 9 / 0 2 / 0 0 / 0 0 / 0 0 / 0

Table 7.1 – Sensitive data leakage across five hardening techniques.

Baseline CLH VD SC FD DaP

Binaries 1713 / 180 1449 / 0 3559 / 4 567 / 0 0 / 72 108 / 72

FLP 45 / 108 9 / 0 28 / 0 234 / 0 0 / 0 36 / 0

Z1B/Z1W 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0

NOP 0 / 0 0 / 0 0 / 0 9 / 0 0 / 0 0 / 0

B 852 / 0 396 / 0 341 / 1 324 / 0 0 / 0 0 / 0

BC 816 / 72 1044 / 0 3190 / 3 0 / 0 0 / 72 72 / 72

Table 7.2 – Fault types statistics for faulted binaries leaking sensitive data.
(normally terminated / terminated by timeout).

flipping a single bit in a branch instruction regulating the encryption loop the
type of branch was changed from bls (branch if less or equal to 30) to blt
(branch if less than 30). Similarly, only two hardened versions of PRESENT

were vulnerable, namely CLH and VD with 9 and 2 binaries respectively. The
leaks were caused by the same FLP faults as in a baseline version.

Next, we analyzed the type of faults causing faulted binaries to leak sen-
sitive data (plaintext) for a baseline and five hardened versions. The vast ma-
jority of leaks were caused by branch instructions faults (both conditional and
unconditional) (see Table 7.2). This was expected since these faults aim to skip
the execution of functions performing sensitive operations (e.g., encryption) or
fault detection. Bit flip faults (FLP) were the second most common cause of
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Baseline CLH VD SC FD DaP

Binaries 1314549 3836889 5639832 52341831 3580380 3902400

Valid cipher 16.7 % 38.64 % 34.07 % 62.87 % 16.99 % 14.02 %

Invalid cipher 17.3 % 2 % 1.64 % 0.19 % 0.57 % 0.55 %

No output 66 % 59.36 % 64.29 % 36.94 % 82.45 % 85.43 %

Table 7.3 – Overall execution results in presence of faults.

data leaks, followed by NOP faults with just a few binaries leaking sensitive
data. Z1B/Z1W faults failed to cause data leaks in all cases.

Overall, hardening techniques FD and DaP proved to be the most effective
in protecting against sensitive data leaks. The FD technique explores redun-
dancy of sensitive computations while DaP performs an in-place results veri-
fication. In contrast to other hardening techniques, FD and DaP operate with
the final encryption results instead of intermediate ones.

7.7.2 Fault tolerance

To analyze the general fault tolerance of the baseline and hardened versions we
count the number of faulted binaries that were unaffected by any of the faults
and produced a valid cipher, then those that produced an invalid cipher, and,
finally, those that crashed and produced no output. Note, the binaries leaking
sensitive data in their output were not considered in this experiment.

The results of the analysis are presented in Table 7.3. The percentage of
faulted binaries producing a valid cipher is higher, sometimes significantly,
than the baseline for most of the hardening techniques. The highest percent-
age was achieved with the SC technique (62.87%) which proved to be more
resistant to faults as compared to other techniques. The hardening techniques
exploring redundancy on a variable level (i.e. CLH and VD) were less efficient,
while techniques exploring redundancy on a function level (i.e. FD and DaP)
were the least efficient. At the same time, the vast majority of faulted binaries
across all five hardening techniques crashed during the execution and provided
no output. This is expected since in most of the cases the injected faults corrupt
the program logic and raise exception errors. To have a better understanding of
the true cause of these crashes we collect statistics on the error codes returned
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Baseline CLH VD SC FD DaP

Crashed binaries 867852 1862129 4807851 19334285 3505885 3845470

Seg. fault 56.11 % 35.21 % 20.99 % 17.36 % 45.28 % 60.81 %

Timed out 30.65 % 6.81 % 43.46 % 0.48 % 15.33 % 9.87 %

Illegal instr. 8.83 % 1.82 % 0.85 % 0.65 % 1.83 % 2.25 %

Aborted 0.63 % 1.7 % 0.68 % 0.11 % 0.29 % 0.29 %

Fault detected n/a 52.4 % 33.2 % 80.22 % 35.3 % 25.03 %

Other 3.78 % 2.06 % 0.82 % 1.18 % 1.97 % 1.75 %

Table 7.4 – Statistics on failed executions.

by the crashed binaries. The results are presented in Table 7.4.

In case of a baseline non-hardened PRESENT version, the vast majority of
faulted binaries crashed due to a segmentation fault, while the others were in-
terrupted by timeout or crashed while trying to execute an illegal instruction.
For the hardened binaries the situation was slightly different. While segmen-
tation faults and timeout errors still constitute the major cause of failure, par-
ticularly for DaP and VD, a significant portion of faulted binaries detected a
presence of faults in their execution logic and terminated by throwing a corre-
sponding error. The fault detection rate varies across all five hardening tech-
niques ranging from 25% to 80% for the DaP and SC techniques respectively.

7.7.3 Performance analysis

Table 7.5 features the execution times for all six binaries (baseline and five
hardened versions) averaged across 10k runs. We also measure the binary size
to see if hardening techniques have any significant impact on file size.

All five hardening techniques have little impact on the binary size adding
on average 1 KByte to the original size, the only exception being the technique
implementing statement counters (SC) that nearly doubles the size of the orig-
inal binary. This is expected since this technique adds two additional lines
of code for each line in the original non-hardened code. In terms of runtime
performance, we see no significant difference in execution times.
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Baseline CLH VD SC FD DaP

File size (bytes) 16448 17340 17652 24524 17764 17908

Execution time (ms) 40.8 39.77 42.16 42.41 42.36 42.09

Table 7.5 – Runtime performance and file size comparison

7.8 Discussion

Considering the leakage of sensitive information, we observe that none of the
hardening techniques were able to prevent plaintext leakage. This is in line
with the results of the previous studies on the impossibility of effective coun-
termeasures to faults [114], but is also concerning since this kind of leakage is
a dangerous vulnerability. We note, however, that the FD and DaP hardening
techniques were the most effective at reducing sensitive data leaks. This is
due to their checks of the final output data instead of the intermediate values,
e.g. loop counters. Nevertheless, these techniques may still be vulnerable to
multiple fault injections that other hardening techniques would detect locally.

The number of faulted binaries still producing a valid ciphertext is another
important parameter for analysis. Our experiments showed that the majority of
faulted binaries simply failed to execute correctly, either crashing or entering
an infinite loop. However, the SC technique appeared to be the most effective
for operating correctly when faulted.

When it comes to types of faults that contributed to sensitive data leaks
there is an absolute leader – branch instruction faults. For this reason, the
hardening techniques that add more branches to the original binary should be
avoided since they create more locations that can be faulted to leak informa-
tion. This was confirmed by the test results in which a SC technique showed
the highest success rate for branch instruction faults. New branches introduced
with the statement counters checks inadvertently increased the attack surface.
On the contrary, alternative techniques, e.g. FD and DaP, proved to be less
affected by this type of faults.

Some of the hardening techniques, namely CLH, SC and VD require spe-
cialized tools to annotate the source code automatically. As a result, the devel-
opers remain oblivious to the nature of the hardening modifications and their
impact on program security. Other techniques, e.g., FD and DaP, are easier to
implement and reason about.
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In terms of performance, in all cases we see no significant impact on run-
time performance, nor on a binary size. The SC technique was the only excep-
tion that had an impact on both the binary size and the runtime performance.
However, considering its fault detection rate (the highest among all the tech-
niques we have studied) this technique strikes a good balance between the
security and performance. Overall, there is a great potential in hardening tech-
niques exploring redundancy on a function level. This granularity is in a sweet
spot between the required developer effort and a desired program safety when
a single fault injection is considered.

Finally, we discuss Chaos Duck’s performance and its ability to simulate
various faults. Chaos Duck proved to be a useful tool in hands of a developer
seeking to improve the safety properties of the software he/she develops. It
allows to systematically perform a fault-tolerance analysis as part of a CI/CD
cycle. We note, however, that the Chaos Duck prototype could be further op-
timized in order to reduce the time needed to explore all the potential fault
space. This can be achieved, for instance, by exploring a low-level language
for Chaos Duck implementation (e.g. C).

7.9 Related work
There is a large body of research on both fault injection and hardening tech-
niques. Below we provide an overview of key related works.

Fault Injection. Various fault injection techniques have been described and
studied previously demonstrating a wide variety of faults and ways to invoke a
particular behavior of a given program [51, 165, 89, 152, 111, 150, 179, 183,
192]. These include fault injection at compile time using LLVM [152, 183] or
on a binary level (like this work) [89, 112, 111]. Their approaches range from
purely experimental [152] to formally verified [165] or even both [112].

Software hardening. Various hardware and software hardening techniques
have been proposed in the past [45, 109]. The most well-known technique im-
plements the N-version [37] approach where multiple implementations of the
same algorithm are executed in parallel and their results are compared for con-
sistency. The computation redundancy ensures the fault-tolerance, since a fault
in one version will cause an inconsistency with other versions’ results. Many
hardening techniques implement the same approach but on the variable [71,
190], statement [43, 71], function [42], or even instruction level [46, 165].
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Another classic countermeasure against software faults relies on using ‘ca-
nary’ words strategically placed in the program’s memory stack by a compiler
to prevent buffer overflow attacks [76]. Other techniques suggested encrypting
the pointer addresses instead [75] or randomizing the address space [52, 100].
Alternative techniques propose countermeasures based on hardware and soft-
ware checksums or randomization of execution order [42].

7.10 Summary
Faults can have a devastating effect on IoT software security, especially those
that target components implementing encryption algorithms. In this chapter
we described our evaluation of several common hardening techniques applied
to an implementation of PRESENT cipher. We compared the impact of these
techniques on security and performance, and analyzed their general resistance
to different types of faults. We determined that techniques exploring redun-
dancy on a function level strike a good balance between software security and
performance properties. We also found out that some of the techniques made
the software more vulnerable to faults resulting in a plaintext being leaked.

To evaluate the efficiency of hardening techniques we developed Chaos
Duck – a framework that strategically injects faults into a given software and
collects statistics on the impact of each fault type. Chaos Duck being com-
pletely automated can be a useful tool in hands of the developers seeking to
improve the security properties of their software. We envision Chaos Duck to
be used to systematically perform a fault-tolerance analysis as part of a contin-
uous integration and development (CI/CD) cycle.



Chapter 8

Analysis and limitations

In this chapter, we identify common properties across all proposed systems
described in the previous chapters and point out their current limitations. To
this end, we first present a unified trust model of private-by-design IoT sys-
tems. Using this model, we then discuss the limitations of these systems and
potential ways to address those.

8.1 A trust model of private-by-design systems

Private-by-design IoT systems presented in the previous chapters while being
used in different domains all share the same high-level design that is based on
three key components stacked on top of each other forming a so-called pyra-
mid of trust as shown at Figure 8.1. These components are trusted hardware,
trusted software, and, finally, trusted third party. We will now describe each
of these components.

Trusted hardware: The trusted hardware at the bottom of the pyramid of
trust lays a solid foundation for all other components. It provides an essential
secure environment and confidentiality and integrity protection for all com-
putations on sensitive sensor data. In HomePad, we rely on a trusted hub
that is fully controlled by the user and is typically deployed locally within the
smart home to eliminate the risks of unauthorized access. In PatrIoT we rely
on TEE provided by Intel SGX technology, which allows us to perform se-
cure computations in the untrusted cloud environment. With SGX enclaves
we can leverage the computational resources of a given cloud host without
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Trusted Hardware

Trusted Software

Trusted
Third Party

Figure 8.1 – Trust model of private-by-design IoT systems (pyramid of trust)

necessarily trusting its operating system, software stack, connected hardware,
and even administrators with physical access to the host – so long as the SGX
enclaves are implemented correctly. To verify that, we perform an attestation
procedure which validates the integrity and confidentiality properties of the
enclave each time PatrIoT starts. Finally, in Flowverine we relax the trusted
hardware requirement slightly by relying on a general mobile hardware to pre-
serve compatibility with the stock Android OS. As an alternative, we could use
the TEE provided by the ARM TrustZone technology available on all modern
smarthphones. With it we could provide similar confidentiality and integrity
protection as the one offered by Intel SGX enclaves.

Trusted software: The trusted software represents the core component of
private-by-design systems. It provides a software stack that ensures a secure
and private sensitive data collection and processing by the untrusted third-party
IoT apps. This trusted software implements the dataflow programming model,
an interface for the users to securely connect their IoT devices, install apps,
and specify their privacy policy rules, and, finally, a mechanism for app ver-
ification and policy enforcement. In HomePad, the trusted software consists
of the hub controller and runtime code, as well as the code of device drivers
and trusted elements’ stubs. In PatrIoT, the trusted software consists of the
TSAR service code which implements a runtime manager, a flowwall security
monitor, an elements’ API and device drivers, and a remote attestation proce-
dure for SGX enclaves. In Flowverine, the trusted software comprises the app
development toolchain with the code weaving service, the certification service
which ensures app authenticity, a manager app to install Flowverine apps on
user devices, and, finally, the Flowverine middleware which provides a run-
time environment for these apps. Finally, in all of the mentioned systems we
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assume the IoT device software to be trusted and configured to interact exclu-
sively with HomePad hub, PatrIoT cloud instance or a smartphone.

Trusted third party: The trusted third parties play an important role in the de-
sign and continuous operation of private-by-design IoT systems. The dataflow
programming model relies on a set of trusted elements that are provided as part
of an API for app developers to use. These elements are embedded in all of the
proposed systems but are originally implemented and maintained by their re-
spective third-party developers. The core software components of HomePad,
PatrIoT and Flowverine are also envisioned to be developed and maintained
by a single entity or a consortium of trusted third-party developers in an open-
source and fully transparent fashion. Finally, in PatrIoT we rely on a trusted
third-party represented by the SCONE’s configuration and attestation service
(CAS) to attest the secure state of the SGX enclaves. Similarly, in Flowverine
the app certification service is maintained by a trusted third-party which can
be a single individual or an organization.

8.2 Limitations of private-by-design IoT systems

In the previous chapters we described how secure and private-by-design IoT
systems can be build. We use various security mechanisms to make sure that
sensitive sensor data is processed in a way that is in line with user expectations
and preferences. Any attempts to circumvent these security mechanisms must
be blocked by the system. The latter is a fundamental requirement for the
users when deciding whether to trust a given system with their data or not.
Despite our best effort to fully comply with such a requirement, some of the
technologies and trusted parties we rely on have their own flaws and limitations
that may have a negative impact on overall system security. While some of
these flaws are related to the assumptions we have made in the design of our
systems, others are related to the current limitations of the technologies we
use. Next, we discuss these flaws and limitations in detail.

8.2.1 Limitations related to trusted hardware

As stated previously, the trusted hardware plays a fundamental role in building
private-by-design systems. If the integrity of the trusted hardware is violated
the whole system will be compromised. It is thus important to recognize and
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take into account current limitations and potential flaws of the trusted hardware
components we rely on.

In HomePad, we rely on a Linux-based local device represented by a per-
sonal computer or a dedicated smart home hub with a specialized hardware to
connect various IoT devices. In both cases, one of the potential attack vectors
is a network connection. A skillful attacker could try to exploit a vulnerability
in the Linux OS or any of the software components installed at the hub to gain
unauthorized access to the sensor data by sending a malicious HTTP request to
the HomePad server. The risks and the consequences of such an attack could
be substantially minimized if not eliminated completely by keeping the hub
up-to-date with the latest security patches and software updates, and by using
a network firewall (e.g. iptables, Fail2ban, or FirewallD) to limit external con-
nections to trusted devices and/or users only. Another potential attack vector
is through a physical access to the trusted hardware. An attacker could com-
promise the security by directly accessing sensitive data stored in the volatile
or persistent memory of the device (e.g., via a memory dump). To prevent this
type of attack, the hub should be placed outside the reach of any unauthorized
party, e.g., at the locked closet.

In PatrIoT we rely on Intel SGX enclaves to provide integrity and confiden-
tiality protection for sensitive data processing at the untrusted cloud environ-
ment. However, various side channel attacks have been demonstrated over the
last few years allowing the attackers with physical access to the host machine
to compromise the enclave security and eavesdrop on its content [26, 72, 141].
To address these attacks Intel has released patched versions of processor mi-
crocode and BIOS updates. While Intel actively works with academia and
open source partners to help mitigate the threats, we cannot be certain about
the protection level provided by the latest security patches and their ability
to prevent new types of attacks. Nevertheless, PatrIoT can take advantage of
various alternative mitigation techniques [176, 199, 200] that address specific
SGX side channel threats.

In Flowverine, the trusted hardware is represented by the mobile device,
i.e., smartphone. While we do not address the security concerns on the hard-
ware level, we rely on built-in access control mechanisms available in the lat-
est versions of Android, such as hardware-backed full phone encryption and
biometric-based authentication, to prevent unauthorized access to Flowverine
middleware and sensor data it manages. However, some attacks are still possi-
ble even with these security measures in place [216]. An attacker with physical
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access to a given smartphone could use a USB connection to interact with ADB
(Android Developer Bridge) interface to add and execute malicious scripts and
exploit vulnerabilities in the device. Attackers can also exploit Android’s re-
covery mode to gain privileged access to user data. To mitigate these attacks,
the latest Android security patches need to be installed and activated on the
device. This, however, proved to be a weak point due to the infrequent patch
release cycle and an abundance of outdated devices that receive no further
updates from their respective manufacturers. Using the newest smartphone
models with the latest security patches seems to be the only way to mitigate
potential security compromises.

8.2.2 Limitations related to trusted software

The trusted software is an essential part of private-by-design IoT systems. It
implements a middleware for sensitive data processing in compliance with user
defined preferences. This software is expected to operate correctly and have
mechanisms in place to prevent potential attacks. Next, we describe some of
the limitations of the trusted software we use that could be potentially exploited
by the attackers.

The core modules of HomePad, PatrIoT and Flowverine have direct access
to sensitive sensor data, so the attackers can try to exploit vulnerabilities in
those modules or in any of their dependencies. With respect to core modules,
an attacker could try to add a malicious code snippet into one of the modules
which when activated will forward the sensor data samples to the external host
controlled by the attacker. For instance, a device driver or its element stub
code could be compromised this way. Considering the open source nature of
the proposed systems, one way to mitigate such attacks would be to utilize
the power of community to perform extensive code review and detect potential
deviations from the modules’ desired and advertised specifications. Similar
approach is used in development of Linux kernel and in other open source
projects. Alternatively, static code analysis techniques could be applied whose
goal is to search for particular attack patterns every time a new software up-
date is submitted. Such an analysis may be performed as part of a continuous
integration and delivery (CI/CD) cycle along with the unit testing procedures.

The same kind of attacks could be carried on any of the third party Java
libraries or npm packages the core modules depend on. An attacker can com-
promise the security of the core modules by injecting a malicious code into
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one of their dependencies. Unfortunately, such attacks are quite common and
have been reported previously [237]. The mitigation strategies include a vet-
ting process that yields trusted maintainers, and a code review and vetting for
new releases of certain sensitive packages. If a given dependency passes both
vetting processes, we can substantially minimize the risks of it being mali-
cious. The same vetting processes can be effectively used to mitigate attacks
that exploit known and still not patched vulnerabilities in certain packages.

Both HomePad and PatrIoT, as well as Flowverine, all have a relatively
large trusted computing base (TCB). This can be viewed as a limitation, since
a large TCB exposes a greater attack surface which can be exploited by the
attacker. By shrinking the TCB size we can reduce the exposure of poten-
tial vulnerabilities and improve overall software robustness. To some extent,
we reduce the TCB size by stripping off non-essential modules and system
features, leaving those available only to advanced users as part of the custom
system package. We also limit the number and size of the libraries in the de-
pendency list, and use slim Docker images where possible. While all of these
measures are not sufficient on their own, they help to minimize the number and
consequences of the potential attacks.

Next, we address the limitations of the operating systems all of our pro-
posed systems rely on. In both HomePad and PatrIoT we rely on a Linux-based
OS (Debian and Alpine Linux respectively), while Flowverine runs on top of
Android OS. In all of these cases, the security level depends on the availability
of the latest security updates, with the highest level when all of such updates
are installed and activated. For Linux-based OSes the security patches release
cycle is rather short resulting in all of the newly discovered vulnerabilities be-
ing patched within few days after reporting. This is, however, not always a case
with Android OS which, as described previously in Section 8.2.1, suffers from
infrequent patch release cycle or absence of patches for discontinued devices.
Nevertheless, we assume that latest software updates and security patches are
applied in a timely manner to ensure the maximum level of protection.

Finally, the existing IoT device software represents another limitation of
our approach. In all of our proposed systems, we assume that IoT devices
are configured to send sensor data exclusively to the HomePad hub, PatrioT
cloud instance or a smartphone that are controlled by the user – the owner
of these devices. This is however not the case for existing IoT devices that
are currently incompatible with the private-by-design model. They are con-
figured to stream sensor data to the cloud servers that are usually maintained
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and fully controlled by the device manufacturer. This model constitutes the
original problem of sensor data privacy which motivated our research. We
showed that our proposed private-by-design system model benefits both users
and device manufacturers without sacrificing data privacy, however, it might
still take time for this approach to get adopted by major manufacturers and ser-
vice providers. Nevertheless, we see a constant shift towards privacy-friendly
IoT systems design [64, 174, 156] and general interest of public in privacy-
oriented technologies [127].

8.2.3 Limitations related to trusted third parties

There are several trusted third parties we rely on. All of those could potentially
act maliciously and by doing so compromise the security of the whole system.

The developers of trusted API elements can introduce a malicious behavior
into the element’s code. This can be done either intentionally or unintention-
ally by adding a bug in otherwise legitimate procedure. The consequence of
such a behavior can range from denial of service (DoS) attacks preventing nor-
mal element’s operation, to sensitive data leaks. In Chapter 6 we studied the
feasibility of N-version programming to bootstrap trust in these trusted ele-
ments and prevent potential malicious behavior. By running several element
instances provided by different developers we can minimize the risks of secu-
rity breaches, so long as these developers do not collude. Additionally, code
review and a vetting process can be effectively used in this case. The same
mitigation techniques can be used to prevent core module developers from act-
ing maliciously by producing a malicious version of the module. In general,
the open source nature of the project and transparency of the developer ac-
tions make it easy to track individual changes in the trusted software stack and
prevent changes that scrutinize security.

We rely on Intel developers to correctly implement SGX hardware and
software components. However, this trust is compulsory. Intel is a single
entity that has exclusive rights and control over SGX technology and all of
the supporting services, e.g., device registration, remote attestation or security
updates. As a consequence, Intel constitutes a single point of failure: if, for in-
stance, Intel’s attestation service fails or, worse, gets compromised, the trusted
system which relies on this service can become unavailable or insecure. We
face similar challenges with the SCONE’s CAS service which PatrIoT uses to
attest the state of the SCONE container. The CAS service is maintained by
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a single entity and can become unavailable and thus prevent the deployment
of new PatrIoT instances, or act maliciously by falsely attesting the authentic-
ity of compromised PatrIoT Docker images. In both cases, the only way to
mitigate such risks is to have a distributed chain of trust maintained by sev-
eral independent entities, similar to certificate authorities (CAs) that verify the
authenticity of issued TLS certificates on the web. Making software compo-
nents of SGX technology and SCONE library OS open source besides allowing
self-hosted attestation services, can also improve security, since a detailed and
thorough security audit will then be possible.



Chapter 9

Conclusions and future work

In this chapter, we summarize the main contributions of this thesis, and outline
the directions for future work.

9.1 Conclusions

One of the biggest barriers to the widespread adoption of IoT devices involves
concerns over privacy of the sensor data these devices collect. Numerous cases
of sensitive data leaks and abuse have been reported, but no adequate measures
have been taken so far to prevent such situations from happening in the future.
In fact, existing IoT services and platforms continue to harvest and monetize
sensitive sensor data from the connected devices without providing any control
to the end users – the owners of those devices. To protect against such threats,
in this thesis, we revisited the design of IoT services and platforms so as to pro-
vide the end-users with greater transparency and control over how their data is
collected and used. To this end, we proposed a model for building private-by-
design IoT systems that span across local (home), cloud and mobile domains.
In all of these systems the end-users retain full control over their device data
and can benefit from various third-party IoT services and applications without
sacrificing their privacy.

Within the local domain, we introduced HomePad, a privacy-aware hub
for smart homes. HomePad aims to empower users with the ability to deter-
mine how various IoT applications (apps) access and process sensitive data
collected by smart devices (e.g., web cams) and to prevent these apps from
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executing unless they abide by the privacy restrictions specified by the users.
To achieve this goal, HomePad implements a dataflow programming model
in which apps are implemented as directed graphs of elements, and each ele-
ment is represented by an instance of a function that processes data in isola-
tion. By modeling the behavior of graph elements and their interactions with
other elements using Prolog rules, HomePad allows for automatic verification
of the app’s data flows against user-defined privacy policies. We implemented
a prototype of HomePad and performed a thorough performance and security
analysis. Homepad incurs a negligible performance overhead, requires a mod-
est programming effort, and provides a flexible policy support to address the
privacy concerns most commonly expressed by potential smart home users.

For the cloud domain, we proposed PatrIoT, a private-by-design IoT plat-
form for smart homes. PatrIoT revisits the typical architecture of existing
cloud-based IoT platforms, and provides an alternative design which allows
end-users to obtain fine-grained control of data flows generated by their IoT
devices. It leverages Intel SGX to prevent unauthorized access to the data by
untrusted IoT cloud providers, and offers users an intuitive security abstraction
named flowwall to specify easy-to-use policies for controlling sensitive sensor
data flows within their smart homes. We have built and evaluated a PatrIoT
prototype on several fronts focusing primarily on performance, policy expres-
siveness, usability. Performance-wise we saw no significant differences when
running IoT apps inside and outside PatrIoT. In terms of available throughput,
despite a significant overhead introduced by the SGX technology, PatrIoT can
sustain a typical smart home traffic load. Finally, most of the participants in a
field study considered PatrIoT to be easy to use, and its supported policies to
be highly expressive and flexible.

For the mobile domain, we introduced Flowverine, a system for building
privacy-sensitive mobile apps for unmodified Android platforms. Flowverine
exposes an API based on a dataflow programming model which allows for
efficient taint tracking of sensitive data flows within each app. By checking
such flows against a security policy, Flowverine can prevent potential privacy
violations. We implemented a prototype of Flowverine and evaluated it on sev-
eral fronts. Our evaluation showed that Flowverine can be used to implement
mobile apps that handle security-sensitive information flows while preserving
compatibility with Android OS and incurring small performance overheads.

Finally, we introduced additional techniques that aim to enhance the secu-
rity and privacy properties of all three systems. First, we studied the feasibility
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of applying N-version programming (NVP) to bootstrap trust in software com-
ponents provided by third party developers. Such components can be used
as part of the trusted software stack within the dataflow programming model,
hence, ensuring their correct implementation and behavior is essential for over-
all system security. Our results showed that NVP can be a viable option to
securing these software components. We then study additional ways to ensure
secure data handling on the device level, by comparing the impact of various
hardening techniques on IoT device software security and performance. As a
result, we offered a guideline for IoT developers seeking to make their soft-
ware robust to fault-injection attacks, and a tool for automatic fault-tolerance
analysis and evaluation.

9.2 Directions for future work

Certain aspects of the proposed systems could be further explored and/or im-
proved. Below we highlight some of the potential directions for future research
and exploration.

The dataflow programming model would benefit from a browser-based vi-
sual interface allowing app developers or even end-users to create app flow
graphs by selecting necessary elements from the palette and connecting them
together without necessarily writing any code. Such app graphs could then be
automatically verified against the privacy policy rules and deployed to the app
store or to the runtime system with a single-click. Node-RED programming
tool for event-driven applications is a great example of such an interface [19].
Node-RED can complement the dataflow programming model and take advan-
tage of the flows verification mechanisms this model provides.

Exploring the ways to apply our data flows verification mechanism in the
context of cloud security is another interesting research direction. For instance,
graphs can be used to visualize and reason about potential security problems
within complex cloud services deployments. Verifying the graph structure and
potential data flows between different service instances could help to expose
otherwise hidden flows and dependency relationships between service’s assets
and validate assumptions about privacy and security risks. Existing tools that
are widely used by cloud developers [157, 138, 169, 54, 149] can only ana-
lyze access rights and exposure of various cloud instances, but not sensitive
data flows between those. We see a great potential in applying our data flows
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modeling and verification techniques in this context. As the IoT apps, service
clusters could be modeled with Prolog rules and facts describing each service’s
generated data types and connections.

There are certain aspects related to dataflow programming model and its
verification mechanism that could be further improved. For instance, the detec-
tion and prevention of implicit data flows generated by the app graphs. While
our programming model makes sensitive data flows explicit and subject to
verification, a determined app developer can still leak sensitive sensor data
through implicit low-bandwidth covert channels, for instance, based on com-
munication patterns to authorized network destinations. Devising methods for
shaping traffic and reducing bandwidth of such channels is an interesting topic
for further studies.

Reducing the size of the trusted computing base (TCB) of the proposed
systems is another interesting research direction. This is especially important
for PatrIoT which due to its dependency on third-party libraries (e.g., SCONE
library) has a rather large TCB. While reducing the TCB size without sacrific-
ing the performance and security is generally a challenging task, one of the po-
tential directions could be exploring other available library operating systems
that might have smaller TCB size, e.g., Graphene-SGX [214]. Furthermore,
SCONE library proved to be not suitable for network-intensive applications,
like PatrIoT’s TSAR service. The latter had a significant performance loss
when running inside SGX enclaves provided by SCONE library. Other library
OSes might offer better performance in the same environment and under the
same conditions.

Lately ARM processors have been making remarkable inroads into the
cloud environment. Naturally, multiple researchers have explored the adoption
of ARM TrustZone technology in order to provide an isolated environment for
sensitive data processing securely in the cloud [60, 59]. Considering the en-
couraging results of the previous studies we argue that TrustZone technology
could be a viable option for hosting PatrIoT software stack within the untrusted
cloud environment. Studying its performance impact and security guarantees
constitutes an exciting direction for future research.
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