
HomePad: A Privacy-aware Smart Hub for Home Environments

Igor Zavalyshyn∗†, Nuno O. Duarte∗, Nuno Santos∗
∗INESC-ID / Instituto Superior Técnico, Portugal

†Université Catholique de Louvain, Belgium
igor.zavalyshyn@student.uclouvain.be

{nuno.duarte,nuno.m.santos}@tecnico.ulisboa.pt

Abstract—The adoption of smart home devices is hindered
today by the privacy concerns users have regarding their
personal data. Since these devices depend on remote service
providers, users remain oblivious about how and when their
data is disclosed and processed. In this paper we present
HomePad, a privacy-aware smart hub for home environments.
Our system aims to empower users with the ability to determine
how applications can access and process sensitive data collected
by smart devices (e.g., web cams) and to prevent applications
from executing unless they abide by the privacy restrictions
specified by the users. To achieve this goal, HomePad applica-
tions are implemented as directed graphs of elements, which
consist of instances of functions that process data in isolation.
By modeling elements and the flow graph using Prolog rules,
HomePad allows for automatic verification of the application’s
flow graph against user-defined privacy policies. Homepad
incurs a negligible performance overhead, requires a modest
programming effort, and provides flexible policy support to
address the privacy concerns most commonly expressed by
potential smart device consumers.

Keywords-smart home; privacy; internet of things; data flow
analysis; smart home devices.

I. INTRODUCTION

One of the biggest barriers to the widespread adoption

of smart devices for home environments involves concerns

about privacy. Today, smart devices compatible with IoT

frameworks such as Samsung SmartThings [1] or Apple

HomeKit [2] depend on Internet connectivity in order to

provide useful service. Numerous smart home devices, from

smart lights and locks to thermostats and cameras constantly

stream their sensor data to service providers’ remote servers

for processing, backup, and remote access and control.

However, end-users have little knowledge or control about

how much or what kind of data is collected by service

providers, nor do users know for what purpose the collected

data will be used or with whom it will be shared.

Moreover, the terms of use of IoT services tend to be

extremely aggressive. For example, the following can be

read from Samsung’s SmartThings terms of use, effective

since April 2017: “you [the user] hereby do and shall grant
SmartThings a worldwide, non-exclusive, perpetual, irrevo-
cable, royalty-free, fully paid, sublicensable and transferable
license to use, modify, reproduce, distribute, share, prepare
derivative works of, display, perform, and otherwise fully
exploit the User Submissions and Device Data in connection

with the SmartThings’s Services” [3]. In practice, users have

to yield full control of their data if they want to benefit from

SmartThings’ services.

In this work, we aim to revisit the design of current

smart home platforms so as to provide end-users with greater

transparency and control over how their data is collected and

used. While this seems to be disadvantageous for service

providers, we argue that such is not the case for two main

reasons. First, it would allow them to reach a large market

of potential privacy-wary IoT consumers. In fact, a recent

study [4] reported that 87% of US consumers “are concerned

about their personal information being collected and used in

ways they were unaware of”; 27% mentioned this concern

as the “main reason they do not currently own a smart

device”. Unfortunately, such fears are all too well justified,

backed up by anecdotal cases of stealthy data theft [5], [6],

[7] or undisclosed data sharing [8], [9]. Second, service

providers face increasing pressure from many countries to

uphold strict personal data handling policies. Notably in

Europe, since May 2018, the GDPR regulations [10] require

service providers to pay formidable penalty fees in case of

personal data misuse or user privacy violations. However,

their common practice of aggressively collecting raw sensor

data and shipping it down to their servers can only increase

such risks.

This paper presents HomePad, a privacy-aware hub for

home environments. Similarly to recently proposed sys-

tems [11], [12], [13], HomePad extends the architecture of

current smart home platforms with the ability to execute IoT

applications at the edge. This is achieved by relying on a

trusted hub device that can both manage the local devices

and provide a local platform for executing IoT apps without

necessarily depending on the service provider’s centralized

services. As a result, whenever the functionality of an app

does not strictly require the shipment of data onto the cloud,

the sensor data can be collected and processed locally by the

applications, therefore reducing the risks of data exposure

and misuse at the service provider’s backend.

To provide end-users with fine-grained control over the

way these untrusted applications access and process sen-

sor data, HomePad introduces two novel features. First,

HomePad forces applications to make all information flows

explicit. It employs a technique that allows to keep track

58

2018 Third ACM/IEEE Symposium on Edge Computing

978-1-5386-9445-9/18/$31.00 ©2018 IEEE
DOI 10.1109/SEC.2018.00012

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on August 28,2022 at 19:15:51 UTC from IEEE Xplore. Restrictions apply.

not only (1) of how the sensor data flows within the

applications, but also (2) of the semantics of the data as

it gets processed inside the application. This allows us, for

example, to determine if an application that takes a photo

from a camera sends that photo to the service provider

in its raw form, or has instead sanitized the photo by

running it through a privacy-preserving blurring algorithm.

Our technique consists of exposing a programming model

in which HomePad applications are implemented as directed
graph of elements, which consist of interlinked instances of

special functional units that can be put together in order to

build applications.

A second noteworthy feature is that HomePad provides

a mechanism that allows users to easily examine whether a

given application has the ability to violate specific privacy

concerns expressed in a user-defined policy. For example,

the user can verify whether an application with access to a

webcam has the ability to send raw image data to the cloud

or not. This verification is performed at install time so that

the user can refuse to install the application if it violates such

conditions. To implement this feature, HomePad generates

a formal model of the application’s element graph in Prolog

rules, and then issues a set of queries to determine the

existence of data flows that violate the user’s privacy policy.

We implemented HomePad and used it to test several use

case applications. From our evaluation of the system, we

found that HomePad was able to effectively detect illegiti-

mate data flows and incures low performance overheads.

Next, we provide an overview of our motivation, approach

and goals. In Section III, we introduce the HomePad hub and

its API. We explain the concepts of dataflow programming

model and the verification techniques in Sections IV and V.

We then introduce the design concepts and implementation

details of the HomePad hub in Sections VI and VII. We

continue with the evaluation results in Section VIII. Finally,

in Section IX we provide a security analysis of HomePad

and describe its current limitations. We conclude with Sec-

tion XI.

II. GOALS AND ASSUMPTIONS

The main goal of this work is to build a programmable

hub system to allow for controlling smart home devices

in a privacy-aware manner for homeowners. Following the

current trends of mobile and web platforms, our hub system

must provide an “appified” platform enabling third-party

developers to write applications that can access the smart

home devices (both for collecting sensor information or

issuing control commands), process sensor data, or even

issue requests to Internet services.

From a privacy perspective, our system must be able to

make users aware of how their sensor data is accessed and

processed by the apps, and eventually prevent the installation

of apps that the homeowner may deem to be too privacy-

invasive. For example, a homeowner may be comfortable

TellWeather
Home App

HomePad Hub
Weather

Web Service

Sensors

Actuators
Hub

Admin

Home Environment

Hub Proxy

Figure 1. HomePad deployment.

with a notification to the cloud when motion is detected

by her front door camera, but not with sending raw image

data extracted from that camera. Our hub system must

provide mechanisms to differentiate flows tolerable by the

homeowner from those that are not.

Note also that we are not worried about preserving the

compatibility with existing IoT platforms, such as Samsung

SmartThings [1] or Apple HomeKit [2]. Nevertheless, we

envision that these platforms can be easily integrated with

our hub device by exposing REST APIs accessible to the

hub. It is also not our goal to be fully compatible with

existing IoT devices. Nevertheless, we assume that the IoT

devices managed by HomePad have a public interface that

allows for the communication between them and the hub.

Threat model: In designing our “appified” home hub, our

main adversary consists of potentially buggy or malicious

applications aiming to extract privacy-sensitive information

from home sensors. An application may try to attain this

goal by leveraging legitimate operations provided by the

hub API. However, we assume that the hub platform itself

is part of the trusted computing base. In particular, we

do not focus on attacks which try to exploit bugs in the

hub software or hardware, or attacks aimed at leveraging

existing vulnerabilities in the smart devices themselves. We

assume that the hub hardware is correct, that the software

that implements the hub system is correct, and that potential

software updates to the hub have been implemented and

signed by trustworthy entities. We focus only on attacks that

aim to exfiltrate sensitive data extracted from smart devices

connected to the hub. Consequently, we do not prevent

privacy breaches from rogue devices deployed at home that

can connect to the Internet bypassing our hub. In this paper,

we do not protect against low-bandwidth side-channels.

III. OVERVIEW

Figure 1 represents a HomePad deployment in a home

environment. HomePad consists essentially of a smart hub

that controls access to all smart devices at home and provides

a platform for the execution of apps, called home apps.

The HomePad hub provides an administration interface

through which the homeowner can access the hub directly

59

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on August 28,2022 at 19:15:51 UTC from IEEE Xplore. Restrictions apply.

Encoder(png, jpg)input port output port

element class parameter strings

element rule
error port

Figure 2. Element that converts a PNG image to JPG.

or tunneled through a proxy and manage it, e.g., to install or

uninstall home apps, register new smart devices, supervise

the execution state of home apps, install hub software

extensions, or set up privacy policies.

Through the HomePad API, a home app can perform

numerous operations, such as collecting data from sensor

devices (e.g., audio from microphones, images from cam-

eras), sending data to actuator sensors (e.g., audio signal

to speakers, or video streams to displays), accessing In-

ternet services, and performing various data computations

(e.g., voice or face recognition, voice synthesis, or data

anonymization). Figure 1 represents a simple home app—

TellWeather—which listens for an audio command (e.g.,

“Tell weather in LA”), issues an HTTP request to a weather

service, converts the response into audio signal, and forwards

it to a speaker.

HomePad was designed from scratch with privacy-

awareness in mind. There are two main features that con-

tribute to attaining this goal. First, the HomePad API adopts

a dataflow programming model that forces applications to

make explicit both all internal data flows and all internal

data transformations. As a result, HomePad contributes to

making applications more transparent with respect to how

they access and process user data. Second, HomePad in-

cludes a mechanism to automatically analyze how and what

information flows within a home app and check the presence

of invalid flows as specified in the privacy policy defined by

the homeowner. This end is achieved by generating a Prolog

model of the home app’s information flow graph and per-

forming relevant queries based on the privacy policy, which

is also specified as simple Prolog rules. Next, we describe

both these features in more detail in independent sections,

and then present the HomePad design in Section VI.

IV. DATAFLOW PROGRAMMING MODEL

This section presents how HomePad applications are writ-

ten, and shows this programming model’s expressiveness,

allowing home apps to be built in a privacy-aware manner.

A. Elements

A HomePad application consists of a directed graph

whose nodes are called elements. An element is a functional

unit that can be executed on the hub. The graph edges repre-

sent a possible path for data transfer between the connected

elements. An element has four important properties:

FromCamera(room,1sec) ToCloud(alice@google)

Figure 3. Sample motion detector app (version 1).

• Element class: Each element has an associated piece of

code which determines its behavior. On the hub, each

element is an instance of that code (e.g., of a Java class).

• Ports: An element can have any number of input or out-

put ports, which can have different semantic meanings.

A message at an input port causes the element code

to execute; at the same time, a message may or may

not be fired to the output port. Elements can optionally

have an error port which is used by the hub to output

internal exceptions and stack traces. Each port type is

denoted with a different notation (see Figure 2) and is

statically typed.

• Parameter string: Element classes may optionally

support parameters to initialize per-element state and

configure the element behavior.

• Element rules: An element must be accompanied by

Prolog rules that specify the (abstract) types of data that

can be sent as output.

Figure 2 represents a simple element, named Encoder,
which converts images from PNG to JPG. The input port

receives the PNG image and the output port sends the

resulting JPG image. The file format is predefined in the

parameter string. The output rule reflects this transformation

as a Prolog rule. These rules are used in HomePad for

privacy verification purposes, and are distributed along with

the element class package. Also note that our element nota-

tion was inspired by the notation used for programming the

Click modular router [14]. We adapted and extended Click’s

notation accordingly, by adding error ports and output rules.

B. Flow graph

Elements can be coupled together to form a directed

graph, which we call flow graph. They can be connected by

linking compatible input and output ports of matching data

type. A flow graph makes information flow explicit across

elements and can be used to fully describe a HomePad app.

Figure 3 represents the flow graph of a simple application

aimed at detecting movement in Alice’s bedroom. Element

FromCamera takes photos from a stationary camera in Al-

ice’s bedroom, at the rate of one picture per second. Then

it sends these pictures to element ToCloud, which internally

issues HTTP requests to upload them to a cloud service

hosted by Google. This cloud service runs a motion detection

algorithm that analyzes differences between consecutive

frames and fires a notification to the user if differences occur.

(For the sake of simplicity, assume that the camera has no

built-in motion detection capability.)

To execute this application inside a running hub, Home-

Pad instantiates each element of the flow graph as a single

60

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on August 28,2022 at 19:15:51 UTC from IEEE Xplore. Restrictions apply.

Switch()

FromCamera(room,1sec) ToCloud(alice@google)

MDetector()

Figure 4. Sample motion detector app (version 2).

object and establishes an internal communication channel

responsible for forwarding the messages between these ele-

ments according to the element connections as specified by

the flow graph; no other data flows are allowed between

elements other than those explicitly declared in the flow

graph. Thus, from Figure 3 we see that camera frames are

produced by FromCamera, which acts as a data source, and

from there flow down to ToCloud, which acts as a data
sink. To interact with the camera(s) and network interfaces,

element objects use internal hub functions provided by

HomePad drivers.

C. Push and pull connection types

In the type of element connection described so far, an

element pushes data from its output port to the input port of

the downstream element (see Figure 3 in which FromCamera
sends incoming camera pictures to ToCloud). We say that

elements are linked by a push connection. In other cases,

elements must retrieve data synchronously from another

element and process it before issuing an output. To address

this need, elements can be connected by pull connections.

Figure 4 illustrates both connection types in the flow graph

of a more complex version of the motion detection app

presented previously. One major change is that instead of up-

loading all pictures to Google, the motion detection function

is implemented locally at the hub by element MDetector. This

element executes every time it receives a new frame from

the input push connection, and keeps comparing incoming

frames in order to detect any differences; if differences exist

it outputs a “motion” event which is forwarded to element

ToCloud, which uploads a notification to the cloud service.

This version also introduces element Switch, which allows

the homeowner to turn the motion detection service on/off.

Switch keeps track of an option (“on” or “off”) selected by

the hub administrator. MDetector must be able to retrieve

the Switch state after receiving a new frame and decide

on the output based on that result: if the state is “on”,

then MDetector sends “motion” events to cloud, otherwise

no events are sent. To read the switch state synchronously,

MDetector links the output port of Switch to its input port

using a pull connection. To differentiate push from pull

connections, we color them in black and white, respectively

(see Figure 4).

FromCamera(frontdoor)

ToCloud(alice@google)

FaceDoorMain()

Logger()

FaceRec(facedb)

Authorizer(authlist)

DoorLock(frontdoor)

Figure 5. Flow graph of the FaceDoor app.

D. Untrusted elements

Each element implements a specific functional unit and

can be considered to be part of the HomePad platform.

HomePad supports the third-party development of new el-

ements that can be incorporated into the hub as platform

extensions (plugins). Since built-in elements are part of

the trusted computing base, we call them trusted elements.

Application developers can also write app-specific elements

to be shipped along with the flow graph and instantiated on

the hub. Because code of such elements cannot be deemed

to be correct, we call them untrusted elements.

Figure 5 illustrates an example of an application that uses

both trusted and untrusted elements, colored respectively in

white and grey. This application is named FaceDoor and

aims to automatically unlock the front door if the presence

of a family member is detected through the camera installed

at the main entrance. It starts by reading pictures from

the camera (FromCamera), and sending them to a face

recognition element (FaceRec). If the face recognition is

successful, FaceRec sends the feature vector of the identified

person to the Authorizer which checks if that person is a

family member. If not, no output is generated. Otherwise,

Authorizer sends a “match” event (without including the

identity of the person), to the untrusted element provided

by the app. This element— FaceDoorMain—sends an unlock

command to the DoorLock element, waits for a response,

and notifies the cloud service. If an error occurs in either

FaceDoorMain or ToCloud, the app logs it using Logger.
The untrusted element FaceDoorMain is necessary to im-

plement a piece of logic specific to the app. To enforce

proper protection against buggy or malicious untrusted el-

ements, HomePad instantiates them inside individual sand-

boxes such that they can communicate with the outer world

only through the element’s input and output ports.

61

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on August 28,2022 at 19:15:51 UTC from IEEE Xplore. Restrictions apply.

FromAudio()

ToCloud(alice@weather)

TellWeather()

TextToSpeech()

SpeechToText()

Authorizer(tellweather)

ToSpeaker()

LightBulb()

LightsControl()

Authorizer(lightscontrol)

AppManager()

TellWeather App LightsControl App

ID:1 ID:2

ID:0

ID:0

Figure 6. Hub configuration with multiple apps.

E. Hub configurations

The previous sections have discussed in detail how to

implement a single application as a single flow graph. In

order to host multiple applications, HomePad must not only

allow multiple independent flow graphs to coexist, one for

each application, but also allow applications to interact with

each other and with global system services. Furthermore,

it is necessary to ensure that applications cannot interfere

with each other, e.g., by modifying each other’s flow graphs.

Moreover, HomePad must enforce strict compliance with the

homeowner’s privacy preferences when (un)installing apps.

To address these requirements, first, we extend the notion

of flow graph to comprise not just a single application

but the entire hub configuration. The hub configuration is

represented by a fully connected flow graph that can be

decomposed into two types of subgraphs: system subgraphs
and application subgraphs. The former implement system-

wide functions (e.g., event bus), and the latter represent

installed applications. Second, installing (or removing) an

application consists of patching the hub configuration so

as to connect to it (or disconnect from it) the respective

application subgraph. To ensure correct behavior, the con-

nection of an application subgraph cannot be performed

arbitrarily, but requires linking specific elements of both ap-

plication subgraph and system subgraphs. Third, for security

reasons, HomePad assigns principal IDs to subgraphs and

defines connection permissions to restrict modifications to

the structure of subgraphs (e.g., to prevent the installation

of an application from tampering with the flow graph of

another application). HomePad assigns the principal ID 0 to

the system subgraph, and a new principal ID (>0) to each

application subgraph. As a general protection rule, HomePad

1 import homepad.∗
2 import homepad.elements.trusted.∗
3

4 class FaceDoorMain extends UntrustedElement {
5 def initialize() {
6 // specify all ports of the FaceDoorMain element interface
7 port name:"auth", type:Authorizer.class, io:"in", connector:"push"
8 port name:"doorlock",type:DoorLock.class,io:"in",connector:"pull"
9 port name:"cloud", type:ToCloud.class, io:"out", connector:"push"

10 port name:"logger", type:Logger.class, io:"out", connector:"push"
11

12 // specify the handler function associated to the push input auth
13 inputhandler("auth") {
14 if (ref("doorlock").command("unlock"))
15 ref("cloud").command("post", ref("auth").evt("id") +
16 + "arrived!")
17 ref("logger").command("write", "Door unlock event.")
18 }
19 }
20 }
21

22 flowgraph {
23 // specify all seven element instances of the flowgraph
24 def fromcamera = new FromCamera("frontdoor")
25 def facerec = new FaceRec("facedb")
26 def auth = new Authorizer("authlist")
27 def doorlock = new DoorLock("frontdoor")
28 def facedoor = new FaceDoorMain()
29 def tocloud = new ToCloud("alice@google")
30 def logger = new Logger()
31

32 // specify the connectors of the flowgraph
33 from fromcamera to facerec
34 from facerec to auth
35 from auth to inport: "auth" facedoor
36 from doorlock to inport: "doorlock" facedoor
37 from outport: "cloud" facedoor to tocloud
38 from outport: "logger" facedoor to logger
39 }

Listing 1. Sample code of the FaceDoor app.

does not allow to interconnect elements of subgraphs with

different IDs. However, connection permissions can override

this rule.

To illustrate these concepts, consider the hub configuration

depicted in Figure 6. It provides a common voice-activated

user interface, through which the user can send instructions

to applications installed on the hub (elements FromAudio
and SpeechToText). Applications can provide audio feed-

back to the user by leveraging elements TextToSpeech and

ToSpeaker. The hub relies on a global AppManager element

to route the voice commands to each application. Figure 6

shows two applications installed: TellWeather, which issues

a web service request to determine the current weather, and

LightsControl, which can turn on/off the lights.

F. Programming model

HomePad provides a simple programming interface for

writing applications. The programming interface is based

upon a domain specific language (DSL) implemented in the

Groovy programming language. To illustrate it, Listing 1

shows the pseudocode of the FaceDoor application repre-

sented by the flow graph depicted in Figure 5. Essentially,

to implement this application, the developer must declare

the element instances (lines 24-30) and element connectors

(lines 33-38) of the application’s flow graph. The trusted

62

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on August 28,2022 at 19:15:51 UTC from IEEE Xplore. Restrictions apply.

elements are instantiated based on built-in classes or ex-

tensions to the HomePad API (e.g., FromCamera, ToCloud,

etc.) which must be imported into the program. Untrusted

elements must be written by the developer as independent

classes, in this example the FaceDoorMain element is im-

plemented by a homonym class. To specify an untrusted

element, it is necessary to declare its ports (lines 7-10) and

input port handlers (lines 13-18). From our experience, the

effort of writing HomePad applications is comparable to the

effort of writing applications for the popular SmartThings

IoT framework, whose API is also based on a DSL devel-

oped in Groovy.

V. VERIFICATION OF PRIVACY PROPERTIES

Section IV presented two simple versions of a motion

detector app that implement a similar functionality, but offer

different levels of privacy protection. In version 1, since the

camera pictures are streamed to the cloud, the cloud provider

has access to the raw picture data (see Figure 3). Version

2 performs most of the processing at the hub endpoint and

simply notifies the cloud service about the occurrence of

motion events (see Figure 4). As a result, version 2 is more

privacy friendly for the user because less information is

released to the cloud provider. The question is then how can

users determine whether a given app satisfies their privacy

requirements in a user-friendly manner.

To address this question, HomePad allows for the au-

tomatic verification of an application’s privacy properties.

In particular, it allows users to (1) determine what type

of information is released by a given application, and (2)

assess beforehand whether the type of information released

by the application is acceptable to the user. The verification

is performed by first creating a model of the application

flow graph in Prolog (named flow graph model), and then

issuing queries to determine the existence of illegitimate

data flows. A data flow is illegitimate if it violates the

conditions specified in a privacy policy provided by the

homeowner. A privacy policy consists of one or more Prolog

rules that specify disallowed flows of specific data types

(e.g., a camera frame) to specific data sinks (e.g., the ToCloud
element). Next, we explain how the flow graph model is

generated, and in Section V-B we cover the main steps for

the verification process.

A. Flow graph formal modeling

To create a flow graph model, HomePad only needs to

analyze the flow graph of the application. From that analysis,

it generates a set of facts and rules describing the elements

the application depends on, their functions, connections, and

the data types they operate with. These facts and rules are

then written to a file, which will be provided to Prolog in

the verification process. The generation of this file entails

three steps:

1 el(fromcamera).
2 el(tocloud).
3 el(switch).
4 con(el(fromcamera), el(mdetector)).
5 con(el(mdetector), el(tocloud)).
6 con(el(switch), el(mdetector)).

Listing 2. Model of flow graph version 2.

1. Model the flow graph structure: HomePad begins to

model the flow graph of an application by generating a

set of facts in Prolog that represent the elements and the

connections of the application’s graph. The general format

of these facts is represented by facts F1 and F2:

F1 → el(x).
F2 → con(el(x), el(y)).

Fact F1 declares x to be an element of the graph,

and fact F2 declares a connection from element x to el-

ement y. When applied to version 1 of the motion de-

tector application (see Figure 3), HomePad generates two

F1 facts (“el(fromcamera).” and “el(tocloud).”) and one F2

fact (“con(el(fromcamera), el(tocloud)).”). On the other hand,

version 2 is modeled by three elements and three connections

as shown in Listing 2 (see Figure 4).

2. Model the behavior of trusted elements: The next step is

to model how each element generates its outputs. Typically,

an output is a function of the element’s inputs and / or

of the element’s internal behavior. Since this function is

dependent on the specific implementation of the element,

to model element behavior, HomePad requires that each

element is associated with its corresponding Prolog rules.

These rules express how the element outputs are produced

and the possible dependencies of these outputs from the

element inputs. They are termed element rules and are

provided to HomePad as part of the application package

(see Section IV-A). When the application is installed, the

HomePad hub keeps a repository of all the element rules

declared in the system. When creating a flow graph model,

HomePad retrieves the rules of the elements used by the

application and includes these rules in the model file.

Table I lists simple output rules for the elements used in

the application examples presented in this paper. In general,

element rules take the following form:

R1 → out(el(x), data(tout(y))) :- in(el(x), data(tin(y))).

This rule states that the output data of element x is

defined as tout(y) and depends on the input data tin(y).
Informally, R1 indicates that an element will produce a

declared output as long as a given input is provided. The

operator “:-” is used to define Prolog clauses. The more

formal declarative interpretation of this Prolog clause is:

“Given X and Y, an output typed tout(y) is produced from

63

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on August 28,2022 at 19:15:51 UTC from IEEE Xplore. Restrictions apply.

Table I
SAMPLE RULES OF HOMEPAD ELEMENTS.

Element name Element output rules

FaceRec out(el(facerec), data(frfunc(X))) :-
in(el(facerec), data(img(X))).

FromCamera out(el(fromcamera), data(img(frame))).

MDetector out(el(mdetector), data(mdfunc(X))) :-
in(el(mdetector), data(img(X))),
in(el(mdetector), data(state(on))).

Switch out(el(switch), data(state(on))).
out(el(switch), data(state(off))).

element X, if an input typed tin(y) reaches that element”.

Note, however, that each element may have a variant of this

rule, or may even require more than a single rule. Consider

now the examples in Table I. Regarding FromCamera and

Switch, out rules indicate the type of data returned by the

element: an image representing a frame from the camera

(img(frame)), and the state of the switch element (state(on)
and state(off)). In the switch element, since two outputs are

possible, it is necessary to specify two rules, one for each

output. Elements MDetector and FaceRec produce an output

that is a function (mdfunc, frfunc) of their respective inputs

(frame). The element ToCloud introduced in Figures 3 and 4

(and omitted in the table) does not require specific rules

because it has no output ports.

3. Model the behavior of untrusted elements: Just like

in the case of trusted elements, untrusted elements must

also be accompanied by Prolog rules that characterize the

type of data output by the element. However, the application

programmer cannot be relied upon to write these rules.

As a result, HomePad defines a common element rule for

all untrusted elements. We take a conservative approach

in modeling such elements by assuming that an untrusted

element will try to forward all input data to the output ports

in an attempt to leak as much data as possible. Thus, we

can model an untrusted element using two rules:

R2 → bad(el(x)).
R3 → out(el(X), data(Y)) :- bad(el(X)), in(el(X), data(Y)).

Rule R2 is used by HomePad do declare a specific element

x as “bad”. This operation is performed at the time when the

application is installed on the hub. At this time, HomePad

sweeps the flow graph, detects additional untrusted elements,

and extends the flow graph model with R2 in which x is

replaced by the name of the element. This operation is

performed for every untrusted element in the flow graph.

HomePad then adds rule R3 which, when read from right

to left, says that if an element X is untrusted (denoted by

“bad”) then all its inputs might be forwarded to the outputs.

In the FaceDoor app, HomePad would automatically mark

FaceDoorMain as bad.

To prevent a malicious untrusted element from bypassing

rules R2 and R3 by memorizing stale inputs in internal

memory and forwarding them to the output in the future,

HomePad forces each untrusted element to be stateless, i.e.,

each input is processed completely independently and the

element cannot internally store state that can be passed over

across different invocations of the element. If the app needs

to store state persistently, it requires the incorporation of

specific storage elements (see Section VI-B) in order to make

all information flows appear explicitly on the flow graph.

4. Model the connection behavior: Now that the structure

of the flow graph and the behavior of each element has

been modeled, the last missing piece is to model the be-

havior of the graph’s connections, which are responsible for

propagating the outputs of upstream elements to the inputs

of downstream elements. To model this behavior, HomePad

adds rule R4 to the flow graph model:

R4 → in(el(X), Y) :- con(el(Z), el(X)), out(el(Z), Y).

Again, this rule should be read from right to left. It says

that if an element Z outputs a data item Y and there exists

a connection between Z and an element X, then X receives

data Y as input. With R4 the behavior of the flow graph is

now completely specified. It is then possible to proceed with

the automatic verification of the app’s privacy properties as

explained next.

B. Information flow tracking and privacy policies

The flow graph model automatically generated by Home-

Pad allows the user to verify the privacy properties of the

respective application. Essentially, our approach for privacy

verification entails issuing specific Prolog queries to the flow

graph model in order to track how information flows within

the application. To this end, HomePad relies on a simple but

powerful rule:

R5 → flows(X,Y) :- in(el(Y), data(X)).

This rule allows to determine if a specific piece of data

X will ever be able to flow within the application until

it reaches element Y. To assess if this statement is true,

R5 checks if data X can eventually appear at the input of

element Y. This rule can be used in HomePad for two main

purposes: application profiling and policy enforcement.

Application profiling: This operation allows the user to

analyze the flow graph of an application and learn how the

information can flow within the application by determining,

(1) what kind of information can be accessed by the appli-

cation, (2) where information can be obtained from, and (3)

where information can be propagated to. The flows rule can

be instrumental for this purpose. For example, considering

the motion application version 2 (see Figure 4), in order to

64

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on August 28,2022 at 19:15:51 UTC from IEEE Xplore. Restrictions apply.

determine if the raw frame data from FromCamera reaches

MDetector and ToCloud, we can issue two R5 queries:

1. ?- flows(img(frame),mdetector).
2. true.
3. ?- flows(img(frame),tocloud).

4. false.

The results of these queries mean that the raw frame data

can arrive at the motion detector element (line 2), but not at

the cloud upload element (line 4). From here we see that this

rule can help query whether a particularly sensitive piece of

data arrives at a given element. But it can also be used for

performing more powerful queries:

5. ?- bagof(X, flows(X,mdetector), L).
6. L = [img(frame), state(on), state(off)].

7. ?- bagof(X, flows(mdfunc(frame),X), L).

8. L = [tocloud].

In the first query (line 5), we aim to determine all data

types that can arrive at a particular element, namely the

motion detector element. A Prolog bagof() predicate is used

for this query in order to obtain a list, or a “bag”, of data

types that satisfy a given condition. The result is shown in

line 6, and consists of a list that comprises the raw frame

data, and the state of the switch (on or off). By observing

both Figure 4 and Table I, we can confirm that this is the

expected result. The second query (line 7) queries for all

elements that can have access to a particular data type,

in this case which elements can access the motion event

mdfunc(frame) returned by MDetector. The result is a list

that includes a single element, ToCloud, as expected.

Policy assessment: While application profiling allows for

generating “privacy reports” of applications, policy assess-

ment aims to ensure that an application can be installed only

if it satisfies the privacy restrictions as specified in a policy.

A privacy policy is provided by the homeowner and consists

of a list of flows facts which must hold true when checked

against an application’s flow graph. The HomePad hub runs

this check at application installation time: if the test fails,

installation aborts. Consider, e.g., the privacy policy P1:

P1 → flows(img(frame),tocloud).

This policy states that raw camera data (img(frame)) is not

allowed to flow to the cloud (i.e., element ToCloud). As a

result, if the homeowner attempts to install the version 1 of

the motion detection application (see Figure 3), then P1 eval-

uates to true, and the installation will be aborted. In contrast,

version 2 of this application satisfies this requirement, and

therefore can be safely installed on the hub. To facilitate the

writing of privacy policies and profiling queries, HomePad

provides hub administrators with a user-friendly interface

to compose them out of predefined Prolog rules. Although

more intuitive solutions can be applied to the specification of

user privacy policies, we currently allow for users to specify

such policies only through a mobile application.

Policy enforcement: Policy enforcement aims at addressing

user privacy preference changes. More specifically, the cases

when a user modifies his initial privacy preferences and by

doing so enables a data flow which was not allowed at

the time of the app’s installation. In this case, HomePad

automatically checks if all currently installed applications

are compliant with the new privacy preferences. HomePad

flags the apps failing this check and halts their execution

temporarily. The user will then have to decide what to do:

either modify the privacy preferences or uninstall the app.

Taking the first version of the motion detector app as an

example, consider the case where Alice wishes to continue

receiving motion notifications from 5pm to 7pm, before

arriving from work and after her son arrives from school,

but this time she wishes the raw video data to be blurred,

so that no video of her son is sent to the cloud. In order to

support such policies, the specification of privacy policy is

extended from P1 to P2:

P2 → rtime(flows(img(frame),tocloud),
excep(mode(blur),time(17,19))).

This enhanced policy, or runtime rule, joins flow rules

with exception rules (rtime(flows(...), excep(...))). Exception

rules complement flow rules with both timing constraints

that restrict the period when a given data flow can occur, as

well as the data mode, i.e., a transformation needed to be

performed on the data before it is sent to the cloud. In this

particular policy, video data would only be sent to the cloud

if it was blurred (mode(blur)), and only during a specific

time period (time(17,19)). This is achieved by modifying the

data flow graph of the application and adding restricting

trusted elements (FaceBlur and a TimeSwitch) to the data

flow path (see Section VI-B for more details on these

elements). HomePad applies such constraints at runtime each

time the application is executed. Both flow and exception

rules allow for a great flexibility in the specification of

policies that express the current users’ privacy concerns.

In Section VIII-E we show how such an approach can be

successfully used in common smart home scenarios.

VI. DESIGN

This section presents architectural details of the HomePad

hub, which allows for the execution of home applications

and verification of their privacy properties.

A. Architecture

In HomePad, there are several involved parties. Users
interact with home apps via apps’ own interfaces. The hub
administrator (typically the homeowner) maintains the hub,

e.g., by installing or removing apps and elements, setting up

privacy policies, performing privacy verification operations.

65

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on August 28,2022 at 19:15:51 UTC from IEEE Xplore. Restrictions apply.

Event Bus

Camera
Drivers

FromCamera
Driver

Network
Driver

ToCloud
Driver…

…

Hub Controller

Configuration
Manager

Model Checker

Extensions
Manager

Element
Dashboard

FromCamera
Instance

ToCloud
Instance Element

Instances

Element
Drivers

System
Drivers

H
u

b
 R

u
n

ti
m

e

Homepad Hub

Figure 7. HomePad hub architecture.

Application developers create HomePad applications, which

involves writing a manifest file specifying the flow graph and

the code of untrusted elements, compiling, and packaging

the code binaries and manifest. Element developers imple-

ment new elements. To this end, they must write the element

code and the output Prolog rule. Platform developers write

and maintain the code of the HomePad core system installed

in the hub. We envision HomePad core and elements to be

developed by an open source community.

Figure 7 represents the main software components of

the HomePad system running on the hub. The model

checker manages a repository of Prolog rules and exposes

a management interface to allow for privacy verification

of applications. This repository contains: the output rules

of elements installed in the system, the models of all

applications installed in the system, and the privacy rules

defined by the hub administrator. Before installing an appli-

cation, the administrator can upload the flow graph of the

application to the system, and check if it is compliant with

the privacy policy. If not, the installation aborts, otherwise,

the application package is deployed into the system.

The configuration manager maintains the installed appli-

cations, offers a management interface to the hub adminis-

trator, and supervises the execution lifecycle of applications.

When a home application is installed on the hub, the

configuration manager instantiates element objects on the

kernel runtime and sets up connections between instances so

as to reflect the flow graph specified in the home application

package. Each element object can interact with a local

driver which serves the specific requests of that particular

element. As for untrusted elements, the runtime kernel runs

the respective app code inside individual sandboxes. The

sandboxing mechanism prevents the use of shared memory

and thus leaking information across elements.

Elements and drivers together implement the app func-

tionality by firing events and routing them internally through

the event bus. Figure 7 illustrates how this works for the

simple motion detector application represented in Figure 3.

The driver of the FromCamera element is configured to read

a new frame (one frame per second) from any camera in

Alice’s bedroom, and forwards that frame to the respective

element instance that belongs to the application. This event

is eventually forwarded to a driver responsible for the

cloud invocation operation. The HomePad hub architecture

is general, allowing for future extensions with new element /

drivers. Next, we describe several trusted element categories

that can be used as app building blocks.

B. Functionality of trusted elements

HomePad includes a library of trusted elements which

allows for highly flexible hub configurations. Trusted ele-

ments can be further incorporated into this library in order to

provide new functions to application developers. We present

several functions, grouped into broader categories:

Interaction with sensors and actuators: A crucial func-

tionality is to enable home apps to access sensors (e.g.,

thermostats, cameras, and microphones) or actuators (e.g.,

locks, or light bulbs). While some elements can implement

low-level functions such as simply reading / writing from

/ to a device, others can be more sophisticated and high-

level. For example, element FromCamera can read data from

multiple devices, know camera location(s), and can take

pictures at predefined frame rates.

Communication with remote endpoints: Trusted elements

can also enable communication with a remote party. The

ToCloud element, e.g., allows an application to issue HTTP

requests to a web service. Specific trusted elements can be

implemented to communicate with a mobile application. To

authenticate the mobile application’s endpoint, the trusted

element can be configured with a public key, whose private

part is maintained by the mobile application only.

System control and management: Some trusted elements

can be devised specifically to help control and manage

the system. For example, Switch (see Figure 4) provides

an interface for the administrator to enable or disable a

given function. This element implements a widget which

is integrated into the control dashboard in the HomePad

hub. Logger provides a logging functionality enabling the

application to maintain a record of operations. Additional

trusted elements can be used to control the system, e.g., the

AppManager element (see Figure 6).

Error handling and debugging: Specific trusted elements

can help handle application errors and debugging, e.g., for

sending bug reports to an application provider. To preserve

anonymity, there can be instances of such elements that, in

addition to packaging memory dumps or exception related

data, can first anonymize that data so as to prevent exfiltra-

tion of sensitive user information.

Storage of persistent data: As mentioned in Section V-A,

untrusted elements where application code is executed are

stateless. However, the application may need to keep state

persistently, either for sharing context information between

66

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on August 28,2022 at 19:15:51 UTC from IEEE Xplore. Restrictions apply.

untrusted elements, exchanging data between multiple appli-

cations, etc. To this end, HomePad includes trusted elements

for persistent data storage. Such elements can be instantiated

with a given capacity. The following example shows the

output rule of a key-value store element:

out(el(kvstore), data(get, K), data(get, V)) :-
in(el(kvstore), data(put, pair(K, V))).

This rule states that the output value of a get request for

key K will return value V, which corresponds to the key-

value pair provided when issuing the request get(K,V). More

sophisticated storage elements can be devised, e.g., to keep

anonymized user data, implementing restricted data access

control through differential privacy, etc.

Data transformation: A class of trusted elements aims

at implementing data transformation functions. Examples

include audio / video codecs, compression algorithms, en-

cryption algorithms, etc. The face recognition element Fac-
eRec presented in Section IV-D is one concrete example. In

general, the output rule of such elements can be written as:

out(el(dtf), data(f (X))) :- in(el(dtf), data(X)).

This rule states that the output of a data transformation

element (dtf) is the result of applying function f to the input

data X. Naturally, the function to be applied is element-

specific. It is also possible to implement data sanitization

functions, e.g., by anonymizing user identifiers, filtering sen-

sitive data, replacing certain data with mockup information.

Time-based dataflow control: Finally, HomePad provides

a set of trusted elements that allow to enforce time con-

straints on the application’s data flow. For instance, with the

TimeSwitch element, users are able to specify time windows

when data flows are allowed or denied. As an example,

consider an IP camera which is allowed to record the video

when the user is not at home, and denied to do so otherwise.

Alternatively, a RateLimit element provides a way to specify

the maximum rate for data transmissions. Following the IP

camera example, the video stream might be restricted to one

frame per second, when an input of ‘1 sec’ is provided to

RateLimit element. This is important when using expensive

mobile network connections or battery-powered devices.

Overall, this type of elements allow for the enforcement

of various time-constraining rules by just modifying the

application graph accordingly.

C. Correctness of trusted elements

HomePad relies on multiple elements provided as part

of the platform. The behavior of these elements and the

operations they perform on sensor data are described by

their accompanying Prolog rules. However, there can be

a mismatch between the elements’ internal implementation

and their corresponding Prolog rules. Such a mismatch must

be avoided otherwise the correctness and safety of trusted

elements could be compromised. To overcome this problem

we propose an approach inspired by the Linux OS success.

We envision trusted elements’ software to be maintained and

scrutinized by an open-source developer community. Several

techniques can then be used in order to provide assurances

with regards to the correctness of trusted elements code,

such as software testing and verification tools.

VII. IMPLEMENTATION

We implemented HomePad to run on top of Debian 8

OS on a dedicated computer. We implemented home apps’

untrusted element sandboxes using Java Security Managers

to restrict access to network and underlying file system.

As for the System Drivers, e.g., Camera Driver, we used

custom Python scripts to interface low level communication

between devices and HomePad’s system drivers wrapping

Java classes. Sensor data is received by system drivers and

forwarded to element drivers, which then serve it to apps’

element instances through the event bus (see Figure 7). This

dataflow is event-based and is fully implemented in Java.

To simulate device communication, we used Arduino Yun

boards [15] and implemented simple device drivers in C++

and Python, to interact with the HomePad hub. These boards

communicate over Wi-Fi through AES-256 secure channels.

To support application scenarios with different sensors,

e.g., cameras, microphones, we established simple APIs to

facilitate the management of these boards via the HomePad

hub. For the same reason, the boards were equipped with a

Sony USB webcam [16] and electret microphones [17].

At install time the Model Checker analyzes the appli-

cation’s DSL code in order to validate the application’s

privacy properties. This validation involves the generation of

the application’s corresponding Prolog model followed by a

set of Prolog queries. The Model Checker component was

implemented as a Java class with SWI-Prolog version 6.6.6

engine stubs. To provide the user with a visual representation

of the applications’ structure and privacy properties, we

implemented an HTML report generator using the Graphviz

tool. This report shows the results of dataflow analysis from

the Prolog queries. In order for users to specify their own

privacy policies we developed a simple Android application

offering a simple API that allows users to pick data sources

and sinks, as well as exception rules such as time constraints

or data modes (e.g., encrypted, anonymized). The app then

sends the Prolog rules to Homepad through HTTPS.

VIII. EVALUATION

We present an evaluation of HomePad regarding per-

formance, application programming effort, and verification

effectiveness. We then evaluate HomePad’s privacy policy

specification mechanism and its ability to model and express

the variety of users’ privacy concerns.

67

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on August 28,2022 at 19:15:51 UTC from IEEE Xplore. Restrictions apply.

Table II
USE CASE EXECUTION TIMES.

Execution
Lights Controller Spotify Controller Tide Pooler FaceDoor

Baseline HomePad Over Baseline HomePad Over Baseline HomePad Over Baseline HomePad Over

Recognition 2.2s (99%) 2.3s (98%) 5.8% 2.3s (99%) 2.4s (99%) 5.6% 2.4s (63%) 2.5s (61%) 4.1% 1.07 (89%) 1.11s (87%) 4.7%

Actuators 34ms (1%) 37ms (<2%) 7.7% 0.7ms (1%) 1.1ms (<1%) 63% 0.7ms (1%) 0.9ms (<1%) 32% 30ms (2%) 35ms (3%) 15%

Network – – – – – – 1.4s (36%)∗ 1.5s (38%)∗ 2.6% 117ms (9%) 119ms (9%) 1.8%

Core – 3.6ms (<1%) – – 3.5ms (<1%) – – 8.8ms (<1%) – – 5.7ms (<1%) –

Total 2.2s (100%) 2.3s (100%) 6% 2.3s (100%) 2.5s (100%) 5.7% 3.8s (100%) 4.1s (100%) 5.4% 1.2s (100%) 1.3s (100%) 4.7%

Legend: Baseline = execution outside HomePad; HomePad = execution inside HomePad; Over = HomePad execution overhead; ∗ = both Network times
account for 63.7ms and 63.9ms to parse the results of the tide request outside and inside HomePad respectively.

A. Use-case applications

To demonstrate the richness of applications supported by

HomePad, we developed four applications using technolo-

gies and devices available today in the smart home environ-

ment. Some applications rely on open-source software, i.e.,

Kaldi ASR [18] for voice recognition and OpenFace [19]

for face recognition.

1) Lights Control application - voice based lights control.

Implemented using Philips Hue API [20].

2) FaceDoor application - face recognition based door

control. Implemented by custom device drivers.

3) Tide Pooler application - voice based tide information

request service that performs text-to-speech conver-

sion when informing the user. This app was ported

from the Amazon Echo [21] skills collection.

4) Spotify Control application - voice based Spotify

player control. Implemented by custom device drivers

and leveraging Spotify’s API.

The privacy risks associated with these applications come

from the way they interact with the user. Voice and face

recognition requires access to the camera or microphone feed

which is a source of sensitive information constantly being

analyzed and may be used without the user’s knowledge.

B. Performance evaluation

To evaluate the performance of HomePad, we adapted the

four home automation applications described above to run

under two different configurations: on HomePad and as stan-

dalone Java applications. This setup allows us to compare the

performance overhead introduced by HomePad. To test the

execution of these apps and measure their performance, we

specified voice commands and pictures as inputs, according

to each use case. The values presented reflect the average

of 40 tests per application, with 20 running inside and the

other 20 running outside HomePad.

Figure 8 plots the execution time of our use-case ap-

plications when executed on HomePad (light grey) and

on standalone mode (dark grey). HomePad introduces an

overhead which varies between 4.7% and 6%. This overhead

is caused by the containerized sandboxes implemented by

HomePad. From our experience, considering that the total

 0

 1

 2

 3

 4

 5

Tide Pooler Hue Lights Spotify FaceDoor

E
xe

cu
tio

n
tim

e
(s

)

Use cases

Outside HomePad
Within HomePad

Figure 8. Use case performace.

execution time varies between 2.2 and 4.1 seconds, these

overheads do not significantly hinder the user’s experience.

To better understand the factors that contribute to the

overall performance of each application, Table II displays

the total application execution time broken down into:

recognition, actuators, network, and core. Recognition time

is associated with the execution of voice or face recognition

and it measures the overhead of running these algorithms

following our privacy preserving containerized approach.

Actuators comprise the time spent on commands to turn on

lights, play the next track on Spotify, output tide information

as sound and unlocking a door. Network time involves

the communication with the outer world, whether to fetch

tide information, or notify a user someone just entered his

home. Core refers to the time spent on the event based

communication characteristic of HomePad’s architecture.

Most of the execution time of these apps is spent on

voice and face recognition (between 61% and 99%), which

constitute the most CPU-intensive tasks. On the other hand,

the time spent on actuators represents a very small per-

centage, never bigger than 3% or longer than 40ms. The

network communication accounts for 9% of FaceDoor’s total

execution time, as it only features an API call to an online

notification service so the user can know when someone

enters his home. In Tide Pooler, networking cost amounts

to 38% taking on average 1.5 seconds (due to the download

68

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on August 28,2022 at 19:15:51 UTC from IEEE Xplore. Restrictions apply.

Table III
PRIVACY POLICY SPECIFICATION AND TRANSLATION.

Application Name Description Privacy Concern Privacy Policy

Amazon Echo Interactive voice assistant app that records and
responds to user commands prepended with
an ”Alexa” wake word.

Can the device record the conversations even
when the wake word was not said?

data source(Amazon Echo), transformation(wake
word detection), data sink(Amazon cloud).

Nest Cam Video surveillance and motion detection app
with cloud backup.

Is the camera active when the owner is at
home?

data source(Nest Cam), time restriction(8 PM - 8
AM), data sink (Nest Cloud)

Hello Barbie Interactive doll app that records and responds
to children’s questions.

What can a toy say to the child? data source(Hello Barbie App), transforma-
tion(word filter), data sink(Hello Barbie Doll).

and parsing of a large file containing tide information). Pro-

cessing and routing internal messages within the HomePad

core takes up only about 1% of the total execution time.

The overall performance is largely influenced by specific

app elements.

C. Application programming effort

To assess the programming effort needed to implement

a HomePad app we ported our most complex use case

application – Tide Pooler – for two additional platforms:

Amazon Skill [22] and Google Speech API [23]. Ama-

zon Skill leverages Amazon’s backend to perform voice

recognition and provides compatibility with Amazon’s Echo

device [21]. Google Speech API provides a voice recognition

service that our Tide Pooler port uses when running as a

Java desktop application. Keep in mind that our baseline

HomePad implementation of Tide Pooler uses HomePad’s

native voice recognition system module based on Kaldi [18].

All Tide Pooler versions were implemented in Java. We

assess the development effort in terms of the number of

lines of code (LOC).

From our experience, we found that the development

effort of implementing Tide Pooler across these platforms

is quite comparable, requiring 331 LOC for Amazon Skill,

332 LOC for Google API, and 370 LOC for HomePad. In all

cases, 35 LOC relate directly to the use case logic, 15 LOC

relate to getting tide information from a server, and 250 LOC

correspond to parsing the json file returned from the server.

The remaining lines of code are specific to the API of each

platform. In HomePad, specifically, 70 LOC are associated

with adaptation to HomePad’s module-element architecture.

D. Detection of privacy violations

To evaluate whether HomePad is able to detect policy

violations by a malicious application, we crafted two of our

use case apps, namely TidePooler and FaceDoor, by adding

malicious untrusted elements into their data flow graph.

These elements, named *Bad, aim to collect raw sensor data

from camera or microphone and send it directly to the cloud

without the user’s knowledge. To implement this in Tide-

Pooler, we added a new element TidePoolerBad to the flow

graph and connected it to FromMicrophone and CloudCall.
Similarly, for FaceDoor, we introduced FaceDoorBad and

added one upstream connection to FromCamera and one

downstream connection to CloudCall. To perform the test,

we also specified this privacy policy:

flows(img(frame),tocloud).
flows(mic(sample),tocloud).

This policy declares to be invalid any flow of raw audio or

video data going to the cloud. We then executed the checker

for each app. In both cases, HomePad has detected privacy

violation and correctly identified the malicious element.

E. Flexibility of privacy policies
HomePad allows for flexible privacy policies. To demon-

strate this flexibility, Table III presents three real-life use-

case scenarios [24], [4] that can benefit from HomePad’s

rich privacy policy features. The first example covers major

concerns regarding always-on voice assistants. Users worry

that devices like Amazon Echo can silently record and

analyze their conversations [25], [26], [27], [28], [29]. Such

concerns can be expressed in a HomePad privacy policy with

an exception rule requiring the wake word detection before

delivering the audio recording to remote service providers.
The second example illustrates a common concern regard-

ing Internet-connected home cameras. Users are essentially

worried that their cameras are active when they are not

supposed to thus violating user privacy [7], [30], [31], [32].

In this particular case, the user wishes for his bedroom’s

camera to be inactive from 8 PM to 8 AM. Within HomePad

this restriction can be validated using an exception rule that

specifies the time during which the restriction applies.
The last example regards common concerns over smart

interactive toys. Parents worry that such toys might leave

children vulnerable to stealthy advertising or offensive con-

tent [6], [33], [34]. In HomePad a swear words privacy

policy can be modelled with an exception rule that performs

word filtering on the data the application wishes to send to

a toy’s speaker. Note that this case shows that HomePad’s

privacy policy specification can not only handle outgoing

data flows but also incoming data flows that may violate

users’ privacy.

IX. DISCUSSION

In this section we provide a brief security analysis of

HomePad as well as its current limitations.

69

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on August 28,2022 at 19:15:51 UTC from IEEE Xplore. Restrictions apply.

A. Security discussion

If we assume that the hub system and installed element

software is correct, an attacker (i.e., a malicious application

developer) may try to deploy malicious untrusted element

code undeclared in the application manifest in an attempt

to execute it on the hub. This attack, however, is prevented

by HomePad, which only allows the execution of elements

explicitly declared in the manifest.

An attacker may attempt to craft the flow graph in the

application manifest, e.g., adding concealed connections

between elements in order to bypass sensitive data to a

data sink, or adding a large number of connections and

elements in order to increase the complexity of the graph and

obfuscate the flow of data. Such attacks can also be thwarted

by HomePad, because it fashions a complete model of the

flow graph which captures all elements and connections

which can, therefore, be detected by the Prolog checker.

A malicious home app may try to exfiltrate information

through implicit flows, e.g., by omitting or issuing a call to

the ToCloud element (even if sensitive data is sent in the re-

quest). However, in HomePad’s flow graphs, all information

flows are made explicit, which means that by the time the

user validates the policy, he is informed that such flows are

possible and can decide consciously as to whether or not to

proceed with the installation of the application.

A limitation of HomePad is that the privacy verification

depends on the correctness of both the output rules of

elements and the rules of privacy policies. If errors exist

in rules, the flow graph will no longer reflect the app’s im-

plementation logic which may result in undetected breaches.

This problem is alleviated by the fact that the Prolog rules

of elements are very simple and relatively easy to analyze.

An additional limitation comes from the conservative ap-

proach used for data flow verification of untrusted elements.

By default, HomePad assumes the output of untrusted ele-

ments to be the same as their inputs. Such a strict approach

was selected in order to safeguard the user’s privacy, even

if it means to incur some false positives. Nevertheless, it is

possible to refine the verification granularity, for instance,

by using dynamic taint-tracking within untrusted elements

to verify the input/output data types.

B. Operational considerations

A potential concern is that it might be complicated to

manage HomePad hub for people with no computing back-

ground, especially to create the privacy policies. Moreover,

the privacy policies can also grow in complexity depending

on the number of installed apps. Creating and managing

complex policies may cause the users to experience decision
fatigue, a state in which a user gets overwhelmed by options

and acts recklessly. To maintain the privacy policies more

manageable, HomePad includes pre-defined rules that can be

used as is according to the profile of the user and the smart

home devices he or she owns. These built-in rules contain

best-practice privacy policies as recommended by industry

experts or other tech-savvy HomePad users.

Another concern is related to HomePad’s backward com-

patibility with existing smart home systems. However, we

argue that the market pressure for enhanced privacy and

data protection may well justify a departure from existing

IoT models in favor of alternative secure-by-design IoT

platforms, such as HomePad. Nevertheless, we plan to

investigate in the future whether it would be possible to

automatically (or semi-automatically) extract the dataflow

model from existing platforms applications, e.g. Samsung

SmartThings, so as to enable developers and smart home

owners to reuse existing applications on HomePad.

X. RELATED WORK

There is a large body of work addressing home au-

tomation and IoT-related issues, such as the privacy of

sensor-generated data. Centralized approaches have been

proposed to address user personal data storage access and

management [35], [36], [37]. However, these contributions

do not consider the issue of how apps use sensitive data once

in their possession. At the same time, Privacy Capsules [38]

processes raw sensor data only inside sealed containers

without network access. While Privacy Capsules limit access

to the network, we allow the user to decide if an app may

access data and network resources dynamically.

Some recent works address these privacy issues from

a network perspective. Davies et al. [13] propose the de-

ployment of cloudlets to run applications and manage their

access to raw sensor data. Yu et al. [12] suggested using

routers to secure IoT devices by running micro network-

security functions, acting as security gateways for each

device. However, in both cases it is assumed the apps and

functions are trusted respectively.

Fernandes et al. [39], [40] as well as Tian et al. [41]

identified and addressed the problems of over-privileged

apps in a popular smart home platform. However, all of

these systems focus mainly on security implications of over-

privileged apps and assume access to their source code. In

ProvThings [42], Wang et al. perform IoT platform log anal-

ysis to detect malicious device actions. They, however, as-

sume the smart home cloud platform execution environment

to be trusted, which is at odds to HomePad assumptions.

A decentralized trigger-action smart home platform DTAP

was proposed in [43]. While DTAP renders compromised

OAuth tokens useless, it does not allow to track and control

the flow of user data to legit token holders. In contrast,

HomePad allows to do so for any third party involved.

There are several systems that perform information flow

analysis through taint tracking [44], [45], [46], but also lever-

aging static code analysis [47], [48], [49]. These systems,

however, do not address the smart home environment and

its complex interaction model.

70

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on August 28,2022 at 19:15:51 UTC from IEEE Xplore. Restrictions apply.

FlowFence [11] uses information flow control to manage

sensor data accesses from applications. One of FlowFence’s

limitations is the inflexibility of its taint labeling mechanism.

For instance, consider again the motion detector example

where Alice wishes to send blurred video data of her bed-

room to the cloud for motion detection. While Homepad’s

privacy policy specification and system trusted elements

allow for the raw video data to be processed before being

sent to the cloud, FlowFence’s mechanism overtaints this

data, preventing even for the blurred data to be sent. On

the other hand, FlowFence offers no way to automatically

verify the privacy properties of an application against users’

preferences, resorting instead to a pure runtime mechanism,

incurring in considerable performance overhead.

There’s also a considerable amount of work in the field

of formal verification [50], [51], [52], [53]. In particular,

Deshotels et al. [54] use Prolog to model the policies of

iOS container sandbox profiles and discover vulnerabilities

in them. Still, this solution does not directly address our

problem as that although it uses Prolog, it has a broader

focus on assessing security rather than privacy properties.

Various software verification techniques have been pro-

posed and used for quite some time [55], [56], [57], [58],

[59]. State-based model checking methods, for instance,

allow to verify the safety properties of a given software by

checking all the possible states it can reach. Although these

methods can provide high precision, their main shortcoming

is a so-called state-space explosion – an exponential growth

of system states which often makes a model checking

ineffective. In HomePad we leverage some model checking

ideas but operate with data operations instead of application

states in order to fully model any IoT app. This allows

to improve the verification performance dramatically and

overall makes the model checking approach more practical.

Furthermore, while classic model checking techniques are

more suitable for control-flow analysis, HomePad’s approach

allows to perform sophisticated data-flow analysis, which is

essential for user privacy guarantees.

XI. CONCLUSIONS

We presented HomePad a privacy-aware home hub that

allows users to supervise how the data generated by smart

devices is processed and used by home applications. In

HomePad, applications are required to be modularized, and

the data flows between those modules made explicit by

the developers. By laying out applications in this fashion,

HomePad can automatically leverage its Prolog-based data

flow verification mechanism in order to assess these applica-

tions’ compliance with users’ privacy policies. Additionally,

Homepad’s expressive privacy policy specification supports

a broad spectrum of privacy concerns users have. By com-

bining these two capabilities, Homepad provides runtime

data control to users.

ACKNOWLEDGMENTS

We thank our shepherd Ardalan Amiri Sani and the

anonymous reviewers for their comments and suggestions.

This work was partially supported by national funds through

Instituto Superior Técnico, Universidade de Lisboa, and

Fundação para a Ciência e Tecnologia (FCT) via projects

UID/CEC/50021/2013 and SFRH/BSAB/135236/2017, and

by the LightKone project in the European Union Horizon

2020 Framework Program under grant agreement 732505.

REFERENCES

[1] “Samsung SmartThings,” https://www.smartthings.com. Ac-
cessed September 2018.

[2] “Apple HomeKit,” https://developer.apple.com/homekit/. Ac-
cessed September 2018.

[3] “SmartThings Terms of Use,” https://www.smartthings.com/
terms. Accessed September 2018.

[4] TRUSTe, “US IoT Privacy Infographics,” https:
//www.truste.com/resources/privacy-research/us-internet-
of-things-index-2015/. Accessed September 2018.

[5] Forbes, “When ’Smart Homes’ Get Hacked: I Haunted
A Complete Stranger’s House Via The Internet,”
http://www.forbes.com/sites/kashmirhill/2013/07/26/smart-
homes-hack. Accessed September 2018.

[6] S. Gibbs, “Hackers can hijack Wi-Fi Hello Barbie to spy
on your children,” https://www.theguardian.com/technology/
2015/nov/26/hackers-can-hijack-wi-fi-hello-barbie-to-spy-
on-your-children. Accessed September 2018.

[7] D. Kerr, “FTC and TrendNet settle claim over hacked security
cameras,” https://www.cnet.com/news/ftc-and-trendnet-
settle-claim-over-hacked-security-cameras/. Accessed
September 2018.

[8] L. Fair, “What Vizio was doing behind the TV
screen,” https://www.ftc.gov/news-events/blogs/business-
blog/2017/02/what-vizio-was-doing-behind-tv-screen.
Accessed September 2018.

[9] C. Matyszczyk, “Samsung’s warning: Our Smart
TVs record your living room chatter,” https:
//www.cnet.com/news/samsungs-warning-our-smart-tvs-
record-your-living-room-chatter/. Accessed September 2018.

[10] “EU General Data Protection Regulation (GDPR),” https://
www.eugdpr.org/. Accessed September 2018.

[11] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato,
M. Conti, and A. Prakash, “FlowFence: Practical Data Pro-
tection for Emerging IoT Application Frameworks,” in Proc.
of USENIX Security, 2016.

[12] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu, “Handling
a Trillion (Unfixable) Flaws on a Billion Devices: Rethinking
Network Security for the Internet-of-Things,” in Proc. of
HotNets, 2015.

71

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on August 28,2022 at 19:15:51 UTC from IEEE Xplore. Restrictions apply.

[13] N. Davies, N. Taft, M. Satyanarayanan, S. Clinch, and
B. Amos, “Privacy Mediators: Helping IoT Cross the Chasm,”
in Proc. of HotMobile, 2016.

[14] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek, “The click modular router,” Proc. of TOCS, 2000.

[15] “Arduino Yun,” https://www.arduino.cc/en/Main/
ArduinoBoardYun. Accessed September 2018.

[16] “Sony PlayStation Eye,” https://www.engadget.com/products/
sony/playstation/eye/specs/. Accessed September 2018.

[17] “Low power, signle-supply, rail-to-rail operational ampli-
fiers,” http://www.ti.com/lit/ds/symlink/opa344.pdf. Accessed
September 2018.

[18] “Kaldi ASR,” http://www.kaldi-asr.org/. Accessed September
2018.

[19] “OpenFace,” https://cmusatyalab.github.io/openface/.
Accessed September 2018.

[20] Philips, “Hue Developer Program,” https://developers.
meethue.com. Accessed September 2018.

[21] “Amazon Echo,” https://www.amazon.com/Amazon-Echo-
Bluetooth-Speaker-with-WiFi-Alexa/dp/B00X4WHP5E. Ac-
cessed September 2018.

[22] “Alexa Skills Kit,” https://developer.amazon.com/alexa-
skills-kit. Accessed September 2018.

[23] “Speech API - Speech Recognition,” https://cloud.google.
com/speech/. Accessed September 2018.

[24] “Privacy and Information Sharing,” http://www.pewinternet.
org/2016/01/14/privacy-and-information-sharing/. Accessed
September 2018.

[25] “How Amazon Echo Users Can Control Privacy,” https:
//www.forbes.com/sites/tonybradley/2017/01/05/alexa-is-
listening-but-amazon-values-privacy-and-gives-you-control.
Accessed September 2018.

[26] “Goodbye privacy, hello ’Alexa’: Amazon Echo, the home
robot who hears it all,” https://www.theguardian.com/
technology/2015/nov/21/amazon-echo-alexa-home-robot-
privacy-cloud. Accessed September 2018.

[27] “How Alexa, Siri, and Google Assistant Will Make Money
Off You,” https://www.technologyreview.com/s/601583/how-
alexa-siri-and-google-assistant-will-make-money-off-you/.
Accessed September 2018.

[28] “The FBI Can Neither Confirm Nor Deny Wiretapping Your
Amazon Echo,” http://paleofuture.gizmodo.com/the-fbi-can-
neither-confirm-nor-deny-wiretapping-your-a-1776092971.
Accessed September 2018.

[29] “How private is Amazon Echo?” https://www.slashgear.com/
how-private-is-amazon-echo-07354486/. Accessed Septem-
ber 2018.

[30] “A Creepy Website Is Streaming From 73,000 Private
Security Cameras,” https://gizmodo.com/a-creepy-website-is-
streaming-from-73-000-private-secur-1655653510. Accessed
September 2018.

[31] “Webcam Maker Takes FTC’s Heat for Internet-of-Things Se-
curity Failure,” http://www.technewsworld.com/story/78891.
html. Accessed September 2018.

[32] “Hacks to turn your wireless IP surveillance cameras
against you,” http://www.networkworld.com/article/
2224469/microsoft-subnet/hacks-to-turn-your-wireless-ip-
surveillance-cameras-against-you.html. Accessed September
2018.

[33] “German parents told to destroy Cayla dolls over hacking
fears,” http://www.bbc.com/news/world-europe-39002142.
Accessed September 2018.

[34] “What did she say?! Talking doll Cayla is hacked,”
http://www.bbc.com/news/av/technology-31059893/what-
did-she-say-talking-doll-cayla-is-hacked. Accessed
September 2018.

[35] A. Chaudhry, J. Crowcroft, H. Howard, A. Madhavapeddy,
R. Mortier, H. Haddadi, and D. McAuley, “Personal data:
thinking inside the box,” in Proc. of Aarhus, 2015.

[36] D. McAuley, R. Mortier, and J. Goulding, “The dataware
manifesto,” in Proc. of COMSNETS, 2011.

[37] N. Anciaux, L. Bouganim, B. Nquyen, I. S. Popa, P. Pucheral,
and P. Bonnet, “Trusted cells: A sea change for personal data
services,” in Proc. of CIDR, 2013.

[38] R. Herbster, S. DellaTorre, P. Druschel, and B. Bhattacharjee,
“Privacy capsules: Preventing information leaks by mobile
apps,” in Proc. of MobiSys, 2016.

[39] Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes,
Z. M. Mao, and A. Prakash, “ContexIoT: Towards Providing
Contextual Integrity to Appified IoT Platforms,” in Proc. of
NDSS, 2017.

[40] E. Fernandes, J. Jung, and A. Prakash, “Security Analysis of
Emerging Smart Home Applications,” in Proc. of the 37th
SSP, 2016.

[41] Y. Tian, N. Zhang, Y.-H. Lin, X. Wang, B. Ur, X. Z. Guo,
and P. Tague, “Smartauth: User-centered authorization for
the internet of things,” in 26th USENIX Security Symposium
(USENIX Security 17), 2017, pp. 361–378.

[42] Q. Wang, W. U. Hassan, A. Bates, and C. Gunter, “Fear and
logging in the internet of things,” in Network and Distributed
Systems Symposium, 2018.

[43] E. Fernandes, A. Rahmati, J. Jung, and A. Prakash, “Decen-
tralized action integrity for trigger-action iot platforms,” in
Network and Distributed Systems Symposium, 2018.

[44] J. Bell and G. Kaiser, “Phosphor: Illuminating Dynamic Data
Flow in Commodity JVMs,” in Proc. of OOPSLA, 2014.

72

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on August 28,2022 at 19:15:51 UTC from IEEE Xplore. Restrictions apply.

[45] O. Ruwase, P. B. Gibbons, T. C. Mowry, V. Ramachandran,
S. Chen, M. Kozuch, and M. Ryan, “Parallelizing dynamic
information flow tracking,” in Proc. of SPAA, 2008.

[46] Y. Xu and E. Witchel, “Maxoid: Transparently Confining
Mobile Applications With Custom Views of State,” in Proc.
of EuroSys, 2015.

[47] A. C. Myers, “JFlow: Practical Mostly-Static Information
Flow Control,” in Proc. of POPL, 1999.

[48] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “FlowDroid:
Precise Context, Flow, Field, Object-sensitive and Lifecycle-
aware Taint Analysis for Android Apps,” in Proc. of PLDI,
2014.

[49] F. Wei, S. Roy, X. Ou et al., “Amandroid: A Precise and
General Inter-component Data Flow Analysis Framework for
Security Vetting of Android Apps,” in Proc. of CCS, 2014.

[50] M. J. May, C. A. Gunter, and I. Lee, “Privacy APIs: Access
Control Techniques to Analyze and Verify Legal Privacy
Policies,” in Proc. of CSFW, 2006.

[51] M. Brusó, K. Chatzikokolakis, and J. Den Hartog, “Formal
Verification of Privacy for RFID Systems,” in Proc. of CSF,
2010.

[52] M. Kost, J.-C. Freytag, F. Kargl, and A. Kung, “Privacy
Verification using Ontologies,” in Proc. of ARES, 2011.

[53] M. Arapinis, L. Mancini, E. Ritter, M. Ryan, N. Golde,
K. Redon, and R. Borgaonkar, “New Privacy Issues in Mobile
Telephony: Fix and Verification,” in Proc. of CCS, 2012.

[54] L. Deshotels, R. Deaconescu, M. Chiroiu, L. Davi, W. Enck,
and A.-R. Sadeghi, “Sandscout: Automatic detection of flaws
in ios sandbox profiles,” in Proc. of ACM CCS, 2016.

[55] J.-P. Queille and J. Sifakis, “Specification and verification of
concurrent systems in cesar,” in International Symposium on
programming. Springer, 1982, pp. 337–351.

[56] Y. Resten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar,
“Symbolic model checking with rich assertional languages,”
in International Conference on Computer Aided Verification.
Springer, 1997, pp. 424–435.

[57] G. J. Holzmann, “The model checker spin,” IEEE Transac-
tions on software engineering, vol. 23, no. 5, pp. 279–295,
1997.

[58] N. Halbwachs, Y.-E. Proy, and P. Roumanoff, “Verification
of real-time systems using linear relation analysis,” Formal
Methods in System Design, vol. 11, no. 2, pp. 157–185, 1997.

[59] V. D’silva, D. Kroening, and G. Weissenbacher, “A survey
of automated techniques for formal software verification,”
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 27, no. 7, pp. 1165–1178, 2008.

73

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on August 28,2022 at 19:15:51 UTC from IEEE Xplore. Restrictions apply.

