
Chaos Duck: a Tool for Automatic IoT Software
Fault-Tolerance Analysis

Igor Zavalyshyn, Thomas Given-Wilson, Axel Legay, Ramin Sadre and Etienne Rivière
ICTEAM, UCLouvain, Louvain-la-Neuve, Belgium

{igor.zavalyshyn,thomas.given-wilson,axel.legay,ramin.sadre,etienne.riviere}@uclouvain.be

Abstract—Internet of Things (IoT) device software frequently
handles sensitive data. This software has to be resistant to
faults to prevent leakage and ensure data privacy and security.
Source code hardening is a common way to make software fault-
tolerant. However, the effectiveness and performance impact of a
chosen hardening technique are not always obvious. Moreover, it
becomes increasingly difficult to predict potential attack vectors
and implement proper countermeasures. To assist in this task,
we developed Chaos Duck, an automatic tool for IoT software
fault-tolerance analysis. Chaos Duck emulates various fault types
and provides statistics on their impact on software security
and stability. We present a case study in which we use Chaos
Duck to compare five software hardening techniques applied
to the PRESENT block cipher implementation. We show that
some simple hardening techniques may improve fault-tolerance,
while others can instead reduce overall security and introduce
new vulnerabilities. Our contributions are twofold: we offer a
software fault-tolerance analysis tool to IoT developers seeking
to make their software secure and robust, and we shed light on
the efficiency of various hardening techniques.

Index Terms—fault-tolerance; fault injection; binary analysis;
Internet of Things; security; encryption

I. INTRODUCTION

Millions of people worldwide use Internet of Things (IoT)

devices such as smart lights, door locks and various health

monitoring wearables to enhance their households and have

more control over their daily lives. The nature of the data these

devices operate with is often personal and sensitive. Examples

of sensitive IoT data include, for instance, room/home occu-

pancy information, door lock state updates or heart rate mea-

surements. In order to preserve the end-user’s privacy these

devices usually encrypt data before transmitting it (e.g., to a

local hub, a mobile phone or a cloud server). However, a single

fault in the encryption logic, introduced either accidentally or

intentionally by an attacker, may cause sensitive data leaks [1]

as illustrated in Figure 1.

To make their devices more resistant to faults, IoT man-

ufacturers may choose to harden the software components

by adding safety logic, that aims to detect the presence of

faults and minimize fault impact. Hardening can be applied

to the hardware on which a given software runs [2] or to the

software itself [3], [4]. While there is a variety of hardening

techniques, in practice, IoT software developers rarely have a

clear understanding of the real impact of a chosen hardening

technique on their software’s fault-tolerance and performance.

In fact, some of the hardening techniques may have a negative
impact and actually increase the software vulnerability [5]–

Sense Encrypt Transmit
65 bpm ******

Normal device operation

Sense Епсгурт Transmit
65 bpm

Device operation in presence of fault

65 bpm

fault
attacker

Fig. 1. Heart rate monitor’s normal operation and under attack. A fault in
encryption logic causes a heart rate data being transmitted in clear text.

[7]. Furthermore, in order to be able to implement proper

countermeasures, the developers need to analyze potential

attack vectors and identify sensitive code parts – a time-

consuming task that requires certain expertise and resources.

To facilitate the process of IoT software hardening, we

have developed and here introduce Chaos Duck – a tool

for automatic software fault-tolerance analysis. Without any

intervention from the developer Chaos Duck injects faults in

a given software and evaluates their impact on the software’s

security and performance. Chaos Duck supports six different

fault types ranging from instruction bit flip to branch faults,

and is able to explore all the potential fault locations. Unlike

other tools that require using unconventional compilers and

dealing with intermediate software representations [8], [9],

Chaos Duck operates on a binary level, and as a consequence

requires less effort and no special expertise from the developer.

To illustrate Chaos Duck’s capabilities, we perform a case

study in which we compare five common software hardening

techniques applied to an implementation of PRESENT – a

lightweight block cipher intended to be used in IoT devices

[10]. We evaluate the effectiveness of the hardening techniques

on three fronts: (1) we start from evaluating their ability to

prevent sensitive data leaks; then, (2) we study their general

fault-tolerance and analyze the impact of each fault type;

and finally, (3) we measure the impact of these hardening

techniques on software performance and binary size.

The main contributions of the paper are as follows:

• We present the design and implementation of Chaos

Duck tool. The results in this paper demonstrate its utility

in detecting sensitive data leaks, program crashes and

46

2021 40th International Symposium on Reliable Distributed Systems (SRDS)

2575-8462/21/$31.00 ©2021 IEEE
DOI 10.1109/SRDS53918.2021.00014

20
21

 4
0t

h
In

te
rn

at
io

na
l S

ym
po

siu
m

 o
n

Re
lia

bl
e

Di
st

rib
ut

ed
 S

ys
te

m
s (

SR
DS

) |
 9

78
-1

-6
65

4-
38

19
-3

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

SR
DS

53
91

8.
20

21
.0

00
14

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on August 28,2022 at 19:25:42 UTC from IEEE Xplore. Restrictions apply.

corruptions in control flows caused by injected faults.

• Using Chaos Duck we compare the efficacy of five

common software hardening techniques and identify their

strengths and weaknesses. We show that techniques ex-

ploring redundancy on a function level provide a good

balance between software security and general fault-

tolerance, while some of the classic hardening techniques

make the hardened software even more vulnerable.

We made the source code of Chaos Duck tool as well as

all of our experimental results open and publicly available 1.

The remainder of this paper is organized as follows. In

Section II we explain the motivation behind this work and de-

fine a threat model. In Section III, we present the background

information needed to understand the context of this work. In

Section IV, we describe a high-level design of Chaos Duck and

its implementation details. We follow with the description of

our case study in which we perform a thorough evaluation of

five hardening techniques and Chaos Duck’s performance in

Section V. Then, in Section VI we present the results of our

case study and in Section VII we discuss the results and point

out Chaos Duck’s limitations and potential improvements.

Finally, we highlight relevant related work in Section VIII

and conclude in Section IX.

II. MOTIVATION AND THREAT MODEL

To prevent fault injection attacks manufacturers of safety-

and security-critical devices often add various countermea-

sures into software components of these devices – a pro-

cess generally known as software hardening. This operation

assumes knowledge about the potential code vulnerabilities

and attack vectors exploiting those. However, such a task is

not trivial and requires high level of expertise and substantial

time investments, which has a direct impact on certification

of the product and its time to market. Furthermore, one

harmful consequence of fault attacks is control flow disruption

which may bypass some of the implemented countermeasures.

Overall, it is unrealistic to expect programmers to manually

investigate all possible control flow disruptions and then come

up with secure and reliable countermeasures against those.

Our goal is to offer an automatic tool for IoT software

fault-tolerance analysis which can emulate all the potential

fault types and locations, and collect statistics on their impact

on a given program’s security and safety. With this tool an

IoT software developer may test the efficiency of various

implemented countermeasures, and depending on the results

select the one that performed best.

Injecting faults via hardware is relatively difficult and

requires expensive specialized hardware [11], [12]. The re-

producibility and accuracy of such injections can be low

depending on the fault type. We therefore concentrate on

software fault injection which allows us to simulate faults at

the exact locations of a program’s binary. By inspecting all the

potential fault locations and analyzing their impact on program

behavior we can measure its tolerance to faults.

1https://github.com/zavalyshyn/chaosduck

In this work we consider an attacker who does not neces-

sarily have access to a program’s source code and can only

interact with instructions of a compiled binary, for instance, a

device firmware blob, by having a temporary access to a given

IoT device. We consider the device itself to be trusted and its

software and hardware components operating normally under

regular circumstances. An attacker may choose to use any of

the available software [13] or hardware [12] fault injection

methods available.

III. BACKGROUND

This section provides useful information for understanding

the context of this work. We start from a description of fault

injection attacks methods and goals, followed by an overview

of different fault types.

A. Fault Injection

Securing IoT devices now is more important than ever as

their numbers grow exponentially. These devices often operate

with sensitive sensor data or perform a critical function and

may become a primary target for attacks that put the end users’

privacy, security and even safety at risk [14], [15].

Fault injection is one type of such attacks. During this

attack a normal device operation mode is disrupted due to

some external effect causing an unexpected behavior, i.e., a
fault. A fault can be introduced either via hardware [16]–

[18] or software [13], [19]. The impact of such a fault on the

device’s behavior varies considerably, ranging from no effect

on its operation, to software crashes or security vulnerabilities.

For instance, a simple power drop, i.e., a glitch, intentionally

introduced by an attacker may cause data corruption or loss.

Similar glitches may result in weaker data protection by

disrupting the encryption logic in device firmware.

In this work we focus on faults that may introduce a security

vulnerability in the device software causing the leakage of

some information that was meant to remain secret. These

faults are particularly dangerous when injected in software

implementing secure programs such as encryption algorithms,

e.g., a fault may cause the software to output a plaintext or

modify a program in a way that the encryption operation is

skipped completely [1].

B. Classification of Faults

We now provide an overview of the fault models considered

in this work. We describe the logic behind each of the fault

types, as well as their impact on program behavior.

A bit flip fault (FLP) flips a single instruction bit in a given

software program. It remains the most common type of faults

which may occur naturally, e.g., due to electromagnetic inter-

ference with external sources, or can be injected intentionally

using specific software [20], [21] or hardware [18].

The byte or word zeroing faults (Z1B or Z1W, respectively)

set instructions’ bytes or whole word respectively to zero.

This type of fault is more likely to be related to hardware

effects like an electromagnetic pulse (EMP), a short burst

of electromagnetic energy, directed at a specific location of

47

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on August 28,2022 at 19:25:42 UTC from IEEE Xplore. Restrictions apply.

memory or bus, and is most effective when targeting values

used in program logic. For example, the number of encryption

rounds used in block ciphers. In fact, it was previously proved

that skipping even a single round of encryption can have a

devastating effect on security [22]–[24].

A no operation fault (NOP) replaces an instruction at a

given address with a nop instruction, effectively skipping it

during the execution of a program. This kind of modification

may have a small effect, like skipping a variable assignment,

or a large one, e.g., skipping a function call.

Finally, the goal of conditional and unconditional branch
faults (BC and B, respectively), is to disrupt the control flow

graph of a given program in a way that is beneficial for an

attacker, e.g., skipping entire blocks of code such as encryption

functions. This is achieved by modifying the target addresses

of the branch instructions so that they point to different

locations in the program’s address space.

IV. CHAOS DUCK

To emulate a fault injection attack and analyze its impact

on a given software binary, we developed and here introduce

Chaos Duck – a tool that automatically injects faults into the

binary and collects statistics on the impact of each fault type

on software security and stability. To use Chaos Duck the

developer only needs to provide a path to a compiled binary

file and specify the architecture this binary was compiled for.

The binary itself can be built with standard optimization and

security hardening flags enabled, which are usually required

for distribution. Chaos Duck does not require any of debug

flags to be enabled since it operates on assembly code.

Chaos Duck automatically disassembles a given binary and

parses its assembly code collecting information about the

instructions set (e.g., address space, size and values), branch

instructions’ locations, types and their targets, initialization of

static variables and their corresponding values, among others.

This information is later used to produce faulted binaries –

copies of the original binary each with a single injected fault.

Strategically Injecting Faults. Some faults require care in

their injection, e.g., branch faults (BC or B), while others can

be injected into any part of the binary, e.g., bit flip faults

(FLP). Strategic fault injection requires certain knowledge of

the binary from the attacker.

For branch faults (BC or B), Chaos Duck modifies the target

of a branch instruction to point to a different location. For

each branch instruction in the original binary multiple faulted

binaries are produced each with a different target address. A

new target address is picked sequentially within the program’s

address space as long as the destination address is within the

branch range.

For NOP faults Chaos Duck checks all the possible out-

comes by replacing each original instruction with a nop
instruction. A similar approach is used for the bit flip (FLP)

faults but in this case Chaos Duck performs an additional

check before injecting a fault. The faulted instruction bytes

with a single flipped bit are checked against an instruction

format supported by a given architecture (e.g., ARM). If a

$ chaosduck ./present arm -C inout.conf

Disassembling and parsing...
Number of detected branches: 37
Number of variable declarations: 25
Number of faulted binaries: 411
Running the faulted binaries...

Plaintext instead of cipher in b_at_0x105b_to_0x1628
Plaintext instead of cipher in bc_at_0x155c_to_0x1192
...

Listing 1. Sample ouput of Chaos Duck tool.

flipped bit makes the instruction invalid Chaos Duck retains

the original bit value and moves on to the next instruction bits

flipping and checking those in turn. As a result, one original

instruction results in multiple valid ‘flipped’ instructions each

with a single injected fault.

Next, Chaos Duck looks for variable declarations that have

a numeric value of up to four bytes and ‘zeros’ them with

Z1B or Z1W faults to produce a new faulted binary for

each discovered declaration. These fault types target variables

controlling the number of encryption rounds or loop counters.

Evaluating Outcomes. Depending on the injected fault the

resulting binary can behave differently during its execution.

Some faulted binaries may produce a result that was not

expected under normal circumstances, e.g., an invalid cipher

that will be impossible to decrypt. Other faulted binaries may

cause a plaintext or even an encryption key to appear in the

output leading to sensitive data leaks. Alternatively, faulted

binaries may also terminate abruptly. Some may fail with a

segmentation fault or crash with an error code, while others

might get caught in an infinite loop.

Chaos Duck automatically executes all the generated faulted

binaries and collects the results (stdout/stderr outputs, exit

codes, and timeouts). The input arguments are provided as

command line parameters or can be supplied in an external

file. For software implementing an encryption algorithm Chaos

Duck accepts an encryption key, plaintext and an expected

cipher as input arguments. Chaos Duck then performs sev-

eral checks on the binary output. First, checking whether a

plaintext or an encryption key (or both) appears in any of the

faulted binaries’ outputs. Second, checking if the produced

cipher (if any) is the expected one. In case of an invalid

ciphertext, Chaos Duck records the injected fault’s type and an

error code (if any). Otherwise, the faulted binary is considered

to have no deviations from its normal operation. In this case

Chaos Duck records the execution results and marks the fault

as unsuccessful.

Implementation. Chaos Duck was implemented in 2 KLoC

of Python. Chaos Duck uses the Capstone2 framework to

disassemble input binaries and verify the validity of faulted

instructions. Chaos Duck supports both x86 and ARM ar-

chitectures, and implements all the fault models described

in Section III-B. The results of fault-tolerance analysis for

a given binary are provided in a form of a CSV file with all

2Available at https://www.capstone-engine.org/

48

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on August 28,2022 at 19:25:42 UTC from IEEE Xplore. Restrictions apply.

the execution outcomes (raw form), and as a short summary

with all the detected vulnerabilities, data leaks and statistics

on faults success rate (report form) as shown in Listing 1.

V. CASE STUDY

To evaluate the efficacy of Chaos Duck we performed

a case study in which we compared five commonly used

software hardening techniques applied to an implementation

of the PRESENT algorithm. We use Chaos Duck to inject

faults into each hardened implementation and evaluate their

impact. The goal of this study is twofold: first, we want to

understand whether Chaos Duck can be a useful tool in hands

of IoT developers seeking to improve the security and safety

properties of their software, and, second, we are curious to

know what software hardening techniques provide better fault-

tolerance and are better suited for IoT scenarios.

For the purpose of this study we consider single fault

injection attacks, which allows us to identify the impact of

each fault type individually. Note that Chaos Duck can be

configured to emulate multiple fault injections at the same

time, however, this has to be done with care since it increases

the number of faulted binaries and analysis time exponentially.

Next, we provide a brief overview of PRESENT block cipher

used in our case study, as well as a description of five

hardening techniques selected for comparison.

A. The PRESENT Block Cipher

PRESENT [10] is a block cipher that was specifically de-

veloped for low-power resource-constrained sensor devices,

typical in the IoT, that due to their hardware constraints

cannot use a conventional AES cipher. PRESENT is an SPN-

based (substitution permutation network) block cipher with

31 rounds, a 64-bit block size and a 80- or a 128-bit key. In

our case study we use a canonical size-optimized version of

PRESENT implemented in C with a 80-bit key3.

A high-level overview of PRESENT algorithm and how it

can be used in a heart rate monitor is shown in Listing 2.

Each of the 31 encryption rounds consists of an XOR operation

to introduce a round key using S-box and permutation layers

(lines 4 to 6). After that, an additional operation performs a

final key XOR at line 9. A heart rate monitor runs a regular

report cycle during which it obtains a new heart rate value

(i.e. state), encrypts it with a generated key and transmits it

to an external receiver (lines 12 to 15).

B. Hardening Techniques

To prevent potential fault injection attacks one can use

various hardening techniques that aim to detect and prevent

incorrect program behavior. To this end, we selected five

state-of-the-art techniques commonly used to harden software

implementations of cryptographic algorithms in embedded

systems [25], [26]. Below we outline the key concepts of

these techniques applied to the PRESENT implementation as

illustrated in Listing 2. For extensive discussion of each

technique we refer to the cited papers.

3Availalbe at http://www.lightweightcrypto.org/implementations.php

1 encrypt(state,key) {
2 int round = 0;
3 while(round < 31) {
4 addRoundKey(state,key);
5 sBoxLayer(state);
6 pLayer(state);
7 round++;
8 }
9 addRoundKey(state,key);

10 }
11 reportcycle() {
12 state = sense();
13 key = generateKey();
14 encrypt(state,key);
15 transmit(state);
16 }

Listing 2. A pseudocode of heart rate monitor’s software using PRESENT.

1 encrypt(state,key) {
2 int round = 0, round_dup = 0;
3 while((round < 31) &&
4 (round_dup < 31)) {
5 addRoundKey(state,key);
6 sBoxLayer(state);
7 pLayer(state);
8 round++; round_dup++;
9 }

10 if (round!=round_dup) error();
11 addRoundKey(state,key);
12 }

Listing 3. Classic loop hardening (CLH) technique.

Classic Loop Hardening (CLH). This technique has been and

continues to be widely used due to its simplicity and minimal

developer effort required [27]–[32]. CLH relies on duplicating

the loop iteration counters and exit conditions forcing a second

check at loop exit (see Listing 3). The rationale behind CLH is

as follows: if an injected fault corrupts the main loop counter,

the duplicated counter will still hold the correct value and

will signal an error on exit condition check. We extend this

technique further by once again verifying all the duplicated

loop counters at the end of each code block. This is particularly

important in case of block cipher implementations that often

include multiple for or while loops.

Variable Duplication (VD). This technique implements re-

dundancy at the variable level [29], [33]. Each variable is du-

plicated and both copies are modified in the same manner (see

Listing 4), i.e., every write operation performed on the original

variable is also performed on its copy. At each read operation

the copies are compared for consistency: if the values do not

match an error is raised. Unlike the CLH technique which

concentrates on loop counters variables only, VD performs this

check every time any variable in a given program is updated

or used in conjunction with another variable.

Statement Counters (SC). This hardening technique (with

minor alterations) has been previously proposed by several

authors [29], [34]–[36]. SC relies on counters that are incre-

mented and checked against the expected value after executing

each source code block (i.e. a function, a loop, or even a

single statement). This allows the detection of attacks that

disrupt the control flow of the program, e.g., by modifying the

target of branch instructions, since the maliciously modified

49

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on August 28,2022 at 19:25:42 UTC from IEEE Xplore. Restrictions apply.

1 encrypt(state,key) {
2 int round = 0, round_dup = 0;
3 while(round < 31) {
4 addRoundKey(state,key);
5 sBoxLayer(state);
6 pLayer(state);
7 if (round!=round_dup) error();
8 round++; round_dup++;
9 }

10 if (round!=round_dup) error();
11 addRoundKey(state,key);
12 }

Listing 4. Variable duplication (VD) technique.

1 #define DECL_INIT(cnt,x) int cnt;if((cnt=x)!=x)error();
2 #define CHECK_INC(cnt,x) cnt=(cnt==x?cnt+1:error());
3 #define RESET_CNT(cnt_while,val) (cnt_while==1||

cnt_while==val) ? cnt_while=1 : error();
4 #define CHECK_LOOP_INC(cnt_loop,x) (cnt_loop==x) ?

cnt_loop+=1 : error();
5 #define CHECK_LOOP_END(cnt_loop,val) if (cnt_loop!=val)

error();
6 encrypt(state,key) {
7 DECL_INIT(enc_cnt,1);
8 CHECK_INCR(enc_cnt,1);
9 int round = 0;

10 CHECK_INC(enc_cnt,2);
11 DECL_INIT(while_cnt,1);
12 CHECK_INC(enc_cnt,3);
13 DECL_INIT(loop_cnt,0);
14 CHECK_INC(enc_cnt,4);
15 while(round < 31) {
16 RESET_CNT(while_cnt,6);
17 CHECK_LOOP_INC(loop_cnt,round);
18 CHECK_INC(while_cnt,1);
19 addRoundKey(state,key);
20 CHECK_INC(while_cnt,2);
21 sBoxLayer(state);
22 CHECK_INC(while_cnt,3);
23 pLayer(state);
24 CHECK_INC(while_cnt,4);
25 round++;
26 CHECK_INC(while_cnt,5);
27 }
28 CHECK_INC(enc_cnt,5);
29 CHECK_LOOP_END(loop_cnt,31);
30 CHECK_INC(enc_cnt,6);
31 addRoundKey(state,key);
32 CHECK_INC(enc_cnt,7);
33 }

Listing 5. ”Statement counters (SC) technique.”

branch target would be executed in an unexpected order. We

implement the variation of this technique proposed by Lalande

et al. [35] which suggests a per-statement counter granularity

for better CFG control (see Listing 5). In this case, the attack

will be detected if any of the two adjacent statements in the

source code are not executed in the right order. There are

also additional counters for function calls, for/while loops or

if blocks.

Function Duplication (FD). With this technique all sensitive

program functions are duplicated and operate on the same

inputs, but their outputs are stored in different variables [37]

(see Listing 6). These variables are compared on function exit:

if the resulting values are different the program throws an error.

The original function needs to be deterministic and have no

external dependencies other than the input. FD can be further

improved by changing the logic of the duplicated function so

1 reportcycle() {
2 state = sense();
3 key = {0xd3, 0xe4 ... 0xba};
4 for (int i=0; i<8; i++) {
5 copy[i] = state[i];
6 }
7
8 encrypt(state,key);
9 encrypt_dup(copy,key);

10
11 for (int i=0; i<8; i++) {
12 if (state[i]!=copy[i]) error();
13 }
14 transmit(state);
15 }

Listing 6. Function duplication (FD) technique.

1 reportcycle() {
2 state = sense();
3 key = {0xd3, 0xe4 ... 0xba};
4 for (int i=0; i<8; i++) {
5 copy[i] = state[i];
6 }
7
8 encrypt(state,key);
9 decrypt(state,key);

10
11 for (int i=0; i<8; i++) {
12 if (state[i]!=copy[i]) error();
13 }
14 transmit(state)
15 }

Listing 7. Decryption at place (DaP) technique.

that the same fault cannot be effectively used twice.

Decryption at Place (DaP). This technique is a variation

of FD and specifically targets implementations of encryption

algorithms. After encrypting a given plaintext a resulting

cipher is sent to a decryption function and its output is

compared with the original plaintext (see Listing 7). If the

encryption (or decryption) function was corrupted the resulting

comparison would fail. A determined attacker would then need

to corrupt the decryption function in the same way or attack

the part of the program responsible for result verification.

VI. EVALUATION

To evaluate hardening effectiveness, we compare five imple-

mentations of PRESENT hardened with techniques described

in Section V-B with a non-hardened (i.e. baseline) canonical

C implementation. All implementations are compiled for the

ARM architecture using the arm-linux-gnueabi-gcc compiler

with no optimization (-O0 flag). For this set of experiments,

compile-time optimization has been intentionally disabled to

be able to clearly differentiate between the results of source

code hardening and compiler actions. However, Chaos Duck it-

self makes no assumptions about the optimization level used

by the programmer and can work with binaries compiled

with optimizations up to level 3. We specifically target the

ARM architecture since many IoT devices available on the

market are ARM-based. The resulting binaries accept a 64-bit

plaintext and a 80-bit key as input and output a 64-bit cipher.

With Chaos Duck we apply the fault models described in

Section III-B to the baseline and hardened binaries and gen-

50

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on August 28,2022 at 19:25:42 UTC from IEEE Xplore. Restrictions apply.

TABLE I
SENSITIVE DATA LEAKAGE IN HARDENED AND NON-HARDENED BINARIES

(NORMALLY TERMINATED VS. TERMINATED BY TIMEOUT).

Baseline CLH VD SC FD DaP

Binaries 51,785 159,253 296,339 1,508,330 125,666 135,775

Key leak 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0

Plaintext leak 48 / 14 50 / 0 148 / 0 2 / 0 0 / 2 6 / 2

DFA vulnerable 2 / 0 9 / 0 2 / 0 0 / 0 0 / 0 0 / 0

erate faulted binaries, i.e., copies of the original binary with a

single injected fault. For each fault model, every possible fault

location is considered. We use a set of three encryption keys

and three plaintexts resulting in nine executions per binary

with a 3 second timeout for each. We then measure the total

number of faulted binaries for baseline and hardened versions

and collect statistics on fault types and their success rate. The

latter serves as an indicator of hardening technique efficiency

against fault injection attacks.

We also analyze the ability of the non-hardened and hard-

ened PRESENT implementations to withstand a key recovery

attack when combined with a cryptanalytical attack (CA).

During this attack the last 31st round of encryption is skipped

making it easier to extract the encryption key as part of a

differential fault analysis (DFA) [22], [23]. We simulate such

an attack by manually setting the rounds number to 30 and

recording the resulting ciphers for all key & plaintext pairs. We

then check whether any of these ciphers appear consistently in

the outputs of faulted binaries for hardened and non-hardened

implementations.

Finally, we measure the average execution time for baseline

and hardened binaries across 10,000 executions with randomly

generated key & plaintext pairs and with the first 200 execution

results skipped to avoid caching concerns. Additionally, we

record the size in bytes for all binaries.

We evaluate hardening techniques on three fronts. First, we

analyze their overall effectiveness in preventing sensitive data

leakage, e.g., a plaintext or an encryption key, in presence of

faults. Second, we study their general fault tolerance against

different types of faults, and analyze the impact of each fault

type. Finally, we analyze the performance impact of each of

the hardening techniques on program runtime as compared

with the non-hardened version.

A. Sensitive data leakage

For each hardening technique we count the number of

faulted binaries that leaked a plaintext or an encryption key

in their outputs (stdout or stderr) consistently across all 9

executions. Each leak type is presented in two categories:

normal faulted binary execution and an interrupted faulted

binary execution based on a 3 sec timeout (marked with

‘timeout’). In case of the latter, the output of the faulted binary

is a (potentially) non-terminating stream of bytes which may

include a plaintext or encryption key.

TABLE II
FAULT TYPES STATISTICS FOR FAULTED BINARIES LEAKING SENSITIVE

DATA (NORMALLY TERMINATED VS. TERMINATED BY TIMEOUT).

Baseline CLH VD SC FD DaP

Binaries 48 / 14 50 / 0 148 / 0 2 / 0 0 / 2 6 / 2

FLP 5 / 12 1 / 0 2 / 0 2 / 0 0 / 0 4 / 0

Z1B/Z1W 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0

NOP 0 / 0 0 / 0 0 / 0 9 / 0 0 / 0 0 / 0

B 22 / 0 12 / 0 20 / 0 0 / 0 0 / 0 0 / 0

BC 21 / 2 37 / 0 126 / 0 0 / 0 0 / 2 2 / 2

Table I features the results of our analysis. We observe that

with hardened and non-hardened faulted binaries it was only

possible to leak a plaintext, and never a key, indicating that

leaking a key is a difficult task (at least when a single fault

injection is considered). As for the plaintext leakage, one can

see that the hardening techniques exploring SC, FD and DaP

were less prone to such leakage producing less than 0.01% of

the faulted binaries that leak a plaintext as compared to the

baseline. The CLH and VD techniques were, however, less

efficient. In both cases the number of faulted binaries leak-

ing plaintext increased, sometimes significantly. For instance,

for the VD technique the number of such faulted binaries

tripled. This technique proved to be largely ineffective at

protecting against data leaks, and instead introduced new leak

opportunities. This is mainly due to the fact that along with

any intermediate variables used by the encryption function, a

variable containing a plaintext data was also duplicated which

doubled its chances of being leaked.

Two faulted binaries of a non-hardened (baseline)

PRESENT implementation were vulnerable to the DFA attack.

Their 31st round of encryption was skipped consistently for

any key & plaintext pair. A bit flip (FLP) fault was the cause

in both cases: by flipping a single bit in a branch instruction

regulating the encryption loop the type of branch was changed

from bls (branch if less or equal to 30) to blt (branch

if less than 30). Similarly, only two hardened versions of

PRESENT were vulnerable, namely CLH and VD with 9 and 2

binaries respectively. The leaks were caused by the same FLP

faults as in a baseline version.

Next, we analyze the type of faults causing faulted binaries

to leak sensitive data (plaintext) for a baseline and five

hardened versions. As seen in Table II, the vast majority of

leaks were caused by branch instructions faults. This was

expected as these faults often aim to cause the program to

skip the execution of a sensitive function, e.g., encryption,

causing a plaintext being output as is. Bit flip faults (FLP)

were the second most common cause of data leaks, followed

by NOP faults with just a few binaries leaking sensitive data.

Z1B/Z1W faults, however, failed to cause a leak in all cases.

Overall, the FD and SC techniques proved to be the most

effective in protecting against sensitive data leaks. The FD

51

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on August 28,2022 at 19:25:42 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Statistics on execution results in presence of faults.

technique explores redundancy of sensitive computations while

SC performs a fine-grained statement-level control flow con-

trol. In contrast to other hardening techniques, FD operates

with the final encryption results instead of intermediate ones,

and the SC technique monitors the execution of a whole

program, instead of monitoring only a single code portion.

B. Fault Tolerance

To analyze the general fault tolerance of the baseline and

hardened versions we measure the percentage of faulted bina-

ries that were unaffected by any of the faults and produced

a valid cipher, then those that produced an invalid cipher,

and, finally, those that crashed and produced no output. We

also measure the percentage of binaries producing inconsistent

results across all 9 executions with different key/plaintext

pairs. Note that the binaries leaking sensitive data in their

output were not considered in this experiment. The results of

the analysis are presented in Figure 2.

The percentage of faulted binaries producing a valid ci-

pher is higher, sometimes significantly, than the baseline for

only two of the hardening techniques, namely CLH with

38.02 % and VD with 42.97 %. These techniques explore

redundancy on a variable level and proved to be more resistant

to faults as compared to other techniques, while techniques

exploring redundancy on a function level (i.e. FD and DaP)

were less efficient. The lowest percentage was achieved with

the SC technique (only 1.64 %). This particular technique

also resulted in the highest percentage of inconsistent results

(60.66 %). Taking a closer look at these inconsistent results

we found out that in most of the cases the binaries produced

a valid cipher (71 %) but failed to do that consistently for all

9 key/plaintext pairs. At the same time, the vast majority of

faulted binaries across all five hardening techniques crashed

during the execution and provided no output. This was ex-

pected since in most of the cases the injected faults corrupt

the program logic and raise exception errors. To have a better

understanding of the true causes of these crashes we collect

statistics on the error codes returned by the crashed binaries.

The results are presented in Figure 3.

In case of a baseline non-hardened PRESENT version, the

majority of faulted binaries crashed due to a segmentation

fault, while the others were interrupted by timeout or crashed

while trying to execute an illegal instruction. For the hardened

binaries the situation was slightly different. While segmenta-

Fig. 3. Statistics on failed executions.

tion faults and timeout errors still constitute the major cause of

failure, particularly for DaP and FD techniques, a significant

portion of faulted binaries detected a presence of faults in their

execution logic and terminated by throwing a corresponding

error. The fault detection rate varies across all five hardening

techniques ranging from 30% (the lowest) to 78% (the highest)

for the DaP and SC techniques respectively.

The results show that depending on the requirements dif-

ferent hardening techniques should be used. For instance, if

the program needs to be robust and output a valid cipher in

majority of cases and fail otherwise, then the VD technique

should be preferred. If security is more important than perfor-

mance, the SC technique is a better option since it ensures the

highest error detection rate.

C. Performance Analysis

All five hardening techniques have little impact on the

binary size adding on average 1 KByte to the original size

(16.4 KBytes), the only exception being the technique imple-

menting statement counters (SC) that nearly doubles the size of

the original binary. This technique adds two additional lines of

code for each line in the original non-hardened code. In terms

of runtime performance, we see no significant difference in

execution times (52.4± 2 ms).

VII. DISCUSSION

Considering the leakage of sensitive information, we ob-

serve that none of the hardening techniques were able to

prevent data leakage. In all cases Chaos Duck was able to

produce at least one faulted binary leaking a plaintext. This

matches with recent results on the impossibility of effective

countermeasures to faults [38], but is also concerning since this

kind of leakage is a dangerous vulnerability. On the other hand,

recent research shows that effective hardening against specific

kinds of faults is possible [38]. More broadly we observe

that some of the hardening techniques were less affected

by the presence of faults, namely FD, SC, and DaP. Their

numbers of faulted binaries leaking plaintext was significantly

lower as compared to other techniques. Both the FD and

DaP techniques explore redundancy on a function level and

can detect faults in the final output as opposed to techniques

that operate on the intermediate values, e.g., loop counters.

However, such an approach may still be vulnerable to multiple

52

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on August 28,2022 at 19:25:42 UTC from IEEE Xplore. Restrictions apply.

fault injections that other hardening techniques would detect

locally. The SC technique is unique in this regard since it

verifies both final and intermediate computation results.

The number of faulted binaries still producing a valid

cipher in presence of faults is another important parameter for

analysis. Our experiments showed that the majority of faulted

binaries simply failed to execute correctly, and either crashed

throwing a segmentation fault or got caught in an infinite

loop. In case of the VD technique, however, the percentage

of faulted binaries producing a valid cipher was the highest

across all other hardening techniques. The hardened code left

fewer opportunities for faults to corrupt the algorithm logic.

We can conclude that VD is an effective way to ensure normal

operation of the binary in presence of faults.

When it comes to types of faults that contributed to sensitive

data leaks there is an absolute leader – branch instruction

faults (BC and B). The developers must pay attention to the

way the chosen hardening technique affects the control flow

graph of the program. The hardening techniques that add more

branching behavior to the binary should therefore be avoided

since they create more locations that can be exploited by an

attacker to leak sensitive information. This was confirmed

by the test results in which both VD and CLH techniques

showed the highest success rate for branch instruction faults.

New branches introduced by duplicating and checking global

or local variables’ values inadvertently increased the attack

surface. On the contrary, alternative techniques, e.g., SC, FD

and DaP, proved to be less affected by this type of fault.

Next, we briefly discuss the developer effort needed to

implement the hardening techniques described in this paper.

Some of these techniques, namely CLH, SC and VD, are

prone to mistakes when implemented manually. They require

specialized tools that annotate the source code automatically.

In this case the developers remain oblivious to the nature of the

hardening modifications and their impact on program security.

Other techniques, like FD and DaP, are easier to implement

and reason about.

Overall, there is a great potential in hardening techniques

exploring redundancy on a function level. This granularity is

in a sweet spot between the required developer effort and

a desired program security when a single fault injection is

considered.

In terms of performance impact of the hardening techniques,

in all cases we see no significant impact on runtime perfor-

mance, nor on binary size.

Finally, we discuss Chaos Duck’s performance and ability

to simulate various fault models. Chaos Duck proved to be

a useful tool in hands of a developer seeking to improve the

security properties of a software she develops. In our case

study we consider an implementation of the PRESENT encryp-

tion algorithm, however any type of software that needs to

meet certain security or privacy requirements (e.g., PCI SSC4

or ISA/IEC 624435 standards) can be effectively analyzed

4https://www.pcisecuritystandards.org/
5https://www.isa.org/intech/201810standards/

with Chaos Duck. Chaos Duck can systematically perform a

fault-tolerance analysis as part of a threat modeling and risk

analysis cycle (potentially as part of a standard continuous

integration and development – CI/CD – process). We note,

however, that the Chaos Duck prototype could be further

optimized in order to reduce the time needed to explore all

the potential fault space. This can be achieved, for instance, by

further parallelizing its execution process on multicore CPUs

or applying a worker-leader scheme in a distributed setting.

VIII. RELATED WORK

There is a significant body of work in the area of fault

injection and software hardening. We will now provide a

brief overview of the most relevant content describing the

differences and similarities with the approach proposed here.

Fault Injection: There are many recent works that have

explored fault injection, in particular on a software level [1],

[8], [9], [35], [39]–[44]. Le et al. introduce a symbolic

LLVM-based Software-implemented Fault Injection (SWiFI)

evaluation framework [8]. The focus of their work is to

test robustness of systems by emulating fault injections and

detecting vulnerabilities. However, the proposed system works

with an intermediate LLVM-IR representation of a program

which limits the ability to operate on a compiled binary

directly.

An alternative Symbolic Program Level Fault Injection and

Error Detection Framework (SymPLFIED) is a program-level

framework designed to identify potential software vulnera-

bilities [39]. It uses symbolic execution and model checking

techniques on low level program representations, but is only

able to support the MIPS architecture.

The Lazart tool can emulate a variety of fault injection

attacks and allows to detect security vulnerabilities using

formal methods [9]. Similarly to SWiFI framework the Lazart

tool emulates control flow modifications on the LLVM-IR

representation of a program which limits its application. In

contrast, Chaos Duck requires no modifications of the original

binary and can work with the assembly code directly.

Rivière et al. propose combining the Lazart tool with the

Embedded Fault Simulator (EFS) [41]. They extend Lazart

by adding lower level fault injection analysis that is also

embedded in the chip with the program [40]. The simulation of

the fault is performed on the hardware level, so the semantics

of the executed program correspond to the real execution of

the program. However, EFS is limited to instruction skip faults

only, i.e., nop faults, and does not consider faults disrupting

program’s control flow.

A low-level approach is taken by Moro et al. which re-

lies on model checking to formally prove the correctness

of the proposed software countermeasures schemes against

fault injection attacks [42]. Again, the focus in this case is

on a very specific and limited model of fault injection that

causes instruction skips and ignores other kinds of attacks.

Furthermore, the model checking is performed over the limited

fragments of an assembly code.

53

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on August 28,2022 at 19:25:42 UTC from IEEE Xplore. Restrictions apply.

A fault model inference focused approach is taken by

Dureuil et al. [43]. The authors select a hardware model and

then test various fault injection attacks upon it. Fault injection

is limited to EEPROM faults on the ARMv7-M architecture,

and the fault model is inferred from the parameters of the

attack and the embedded program. The faults are emulated

upon the assembly code and the results are checked with

predefined oracles on the embedded program.

Given-Wilson et al. perform a systematic analysis of several

approaches to software-based fault injection emulation and

compare those with the results of hardware-based experi-

ments [44]. In particular, they show that software based

emulation approaches are able to identify locations of likely

vulnerability which can then be verified by hardware exper-

iments. Furthermore, the authors highlight the need for au-

tomating the process of fault injection vulnerability detection

and integrating it into a software development cycle, which is

exactly what Chaos Duck allows to do.

Overall, all available tools for fault-injection emulation and

vulnerability detection are still far from being commonly

used. They assume the developer to have certain expertise in

statistical model checking and experience in working with low-

level program representations, which is not always a case. In

contrast to these tools, Chaos Duck is fully automatic, it does

not require any special skills from the developer, works on a

compile binary level and can be easily integrated in a standard

CI/CD cycle.

Hardening Techniques: Various hardware and software

hardening techniques have been proposed since the early

1970’s [25], [26], [45]. The most well-known technique is the

one implementing the N-Version approach [46]. In it, multiple

implementations (versions) of the same algorithm are executed

in parallel and their results are compared for consistency

before proceeding. The computation redundancy ensures the

fault-tolerance, since a fault in one version will cause an

inconsistency with results from other versions. Inspired by

this approach many hardening techniques implement the same

approach but on the variable [29], [30], [32], [33], state-

ment [27]–[29], function [37], or even instruction level [25],

[42], [47]–[49].

Another classic countermeasure against software faults re-

lies on using ‘canary’ words strategically placed in the pro-

gram’s memory stack by a compiler to prevent buffer overflow

attacks [50]. Other techniques suggest encrypting the pointer

addresses instead [51] or randomizing the address space [52],

[53]. Alternative techniques propose countermeasures based

on hardware and software checksums, ratification counters and

baits or randomization of execution order [37].

IX. CONCLUSIONS

Faults can have a devastating effect on IoT software se-

curity, especially those that target components implement-

ing encryption algorithms. This work presents the Chaos

Duck tool for automated fault tolerance analysis and describes

our experience in using it to evaluate the efficiency of five

software hardening techniques applied to an implementation

of PRESENT cipher. The results show that techniques exploring

redundancy on a function level such as FD and DaP strike

a good balance between software safety and performance

properties. At the same time, some of the classic techniques

tend to make software more vulnerable to faults resulting in

even bigger exposure or data leaks. Chaos Duck was able to

efficiently inject six different fault types ranging from bit flips

to branch faults, and then provide a report on detected secu-

rity vulnerabilities, including sensitive data leaks, corrupted

outputs, and inputs leading to error or failure states.

Overall, an automated fault tolerance analysis tool such

as Chaos Duck can be a useful tool in hands of an IoT

developer seeking to improve the security properties of the

software she develops. We envision Chaos Duck to be used to

systematically perform a fault-tolerance analysis as part of a

continuous integration and development (CI/CD) cycle.

ACKNOWLEDGMENTS

This work was partially supported by CISCO research grant

and by the Brussels Institute for Research and Innovation

(Innoviris) under project “Smart and Social Home Care”.

REFERENCES

[1] T. Given-Wilson, A. Heuser, N. Jafri, and A. Legay, “An automated
and scalable formal process for detecting fault injection vulnerabilities
in binaries,” Concurr. Comput. Pract. Exp., vol. 31, no. 23, 2019.
[Online]. Available: https://doi.org/10.1002/cpe.4794

[2] B. Sunar, G. Gaubatz, and E. Savas, “Sequential circuit design for
embedded cryptographic applications resilient to adversarial faults,”
IEEE Transactions on Computers, vol. 57, no. 1, pp. 126–138, 2007.

[3] B. Gierlichs, J.-M. Schmidt, and M. Tunstall, “Infective computation and
dummy rounds: Fault protection for block ciphers without check-before-
output,” in International conference on cryptology and information
security in Latin America. Springer, 2012, pp. 305–321.

[4] A. Poschmann, A. Moradi, K. Khoo, C.-W. Lim, H. Wang, and S. Ling,
“Side-channel resistant crypto for less than 2,300 ge,” Journal of
Cryptology, vol. 24, no. 2, pp. 322–345, 2011.

[5] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A systematic methodology to compute the architectural vulnerabil-
ity factors for a high-performance microprocessor,” in Proceedings.
36th Annual IEEE/ACM International Symposium on Microarchitecture,
2003. MICRO-36. IEEE, 2003, pp. 29–40.

[6] H. Schirmeier, C. Borchert, and O. Spinczyk, “Avoiding pitfalls in fault-
injection based comparison of program susceptibility to soft errors,” in
2015 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. IEEE, 2015, pp. 319–330.

[7] A. Shrivastava, A. Rhisheekesan, R. Jeyapaul, and C.-J. Wu, “Quanti-
tative analysis of control flow checking mechanisms for soft errors,” in
Proceedings of the 51st Annual Design Automation Conference, 2014,
pp. 1–6.

[8] H. M. Le, V. Herdt, D. Große, and R. Drechsler, “Resilience evaluation
via symbolic fault injection on intermediate code,” in Proc. of DATE.
IEEE, 2018, pp. 845–850.

[9] M.-L. Potet, L. Mounier, M. Puys, and L. Dureuil, “Lazart: A symbolic
approach for evaluation the robustness of secured codes against control
flow injections,” in Proc. of ICST. IEEE, 2014, pp. 213–222.

[10] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J.
Robshaw, Y. Seurin, and C. Vikkelsoe, “Present: An ultra-lightweight
block cipher,” in International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, 2007, pp. 450–466.

[11] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault injection
attacks on cryptographic devices: Theory, practice, and countermea-
sures,” Proc. of the IEEE, vol. 100, no. 11, pp. 3056–3076, 2012.

[12] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E. Encrenaz,
“Electromagnetic fault injection: towards a fault model on a 32-bit
microcontroller,” in 2013 Workshop on Fault Diagnosis and Tolerance
in Cryptography. IEEE, 2013, pp. 77–88.

54

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on August 28,2022 at 19:25:42 UTC from IEEE Xplore. Restrictions apply.

[13] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson, “Fault injection
into vhdl models: the mefisto tool,” Predictably Dependable Computing
Systems, pp. 329–346, 1995.

[14] A. Hern, “Hacking risk leads to recall of
500,000 pacemakers due to patient death fears,”
https://www.theguardian.com/technology/2017/aug/31/
hacking-risk-recall-pacemakers-patient-death-fears-fda-firmware-update.

[15] N. Garun, “Almost half a million pacemakers need a firmware update to
avoid getting hacked,” https://www.theverge.com/2017/8/30/16230048/
fda-abbott-pacemakers-firmware-update-cybersecurity-hack.

[16] Y.-i. Hayashi, N. Homma, T. Sugawara, T. Mizuki, T. Aoki, and H. Sone,
“Non-invasive emi-based fault injection attack against cryptographic
modules,” in 2011 IEEE International Symposium on Electromagnetic
Compatibility. IEEE, 2011, pp. 763–767.

[17] J. Karlsson, P. Folkesson, J. Arlat, Y. Crouzet, G. Leber, and J. Reisinger,
“Application of three physical fault injection techniques to the experi-
mental assessment of the mars architecture,” Dependable Computing and
Fault Tolerant Systems, vol. 10, pp. 267–288, 1998.

[18] D. F. Kune, J. Backes, S. S. Clark, D. Kramer, M. Reynolds, K. Fu,
Y. Kim, and W. Xu, “Ghost talk: Mitigating emi signal injection attacks
against analog sensors,” in 2013 IEEE Symposium on Security and
Privacy. IEEE, 2013, pp. 145–159.

[19] S. Govindavajhala and A. W. Appel, “Using memory errors to attack
a virtual machine,” in 2003 Symposium on Security and Privacy, 2003.
IEEE, 2003, pp. 154–165.

[20] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson,
K. Lai, and O. Mutlu, “Flipping bits in memory without accessing them:
An experimental study of dram disturbance errors,” ACM SIGARCH
Computer Architecture News, vol. 42, no. 3, pp. 361–372, 2014.

[21] K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and H. Bos,
“Flip feng shui: Hammering a needle in the software stack,” in 25th
USENIX Security Symposium (USENIX Security 16), 2016, pp. 1–18.

[22] G. Wang and S. Wang, “Differential fault analysis on present key sched-
ule,” in 2010 International Conference on Computational Intelligence
and Security. IEEE, 2010, pp. 362–366.

[23] N. F. Ghalaty, B. Yuce, and P. Schaumont, “Differential fault intensity
analysis on present and led block ciphers,” in International Workshop
on Constructive Side-Channel Analysis and Secure Design. Springer,
2015, pp. 174–188.

[24] T. Given-Wilson, N. Jafri, and A. Legay, “Combined software and
hardware fault injection vulnerability detection,” Innovations in Systems
and Software Engineering, 2020.

[25] A. Barenghi, L. Breveglieri, I. Koren, G. Pelosi, and F. Regazzoni,
“Countermeasures against fault attacks on software implemented aes:
effectiveness and cost,” in Proceedings of the 5th Workshop on Embed-
ded Systems Security, 2010, pp. 1–10.

[26] N. Theißing, D. Merli, M. Smola, F. Stumpf, and G. Sigl, “Comprehen-
sive analysis of software countermeasures against fault attacks,” in 2013
Design, Automation & Test in Europe Conference & Exhibition (DATE).
IEEE, 2013, pp. 404–409.

[27] G. Barbu, P. Andouard, and C. Giraud, “Dynamic fault injection coun-
termeasure,” in International Conference on Smart Card Research and
Advanced Applications. Springer, 2012, pp. 16–30.

[28] G. Bouffard, B. N. Thampi, and J.-L. Lanet, “Detecting laser fault
injection for smart cards using security automata,” in Proc. of SSCC.
Springer, 2013, pp. 18–29.

[29] P. Cheynet, B. Nicolescu, R. Velazco, M. Rebaudengo, M. S. Reorda,
and M. Violante, “Experimentally evaluating an automatic approach for
generating safety-critical software with respect to transient errors,” IEEE
Transactions on Nuclear Science, vol. 47, no. 6, pp. 2231–2236, 2000.

[30] R. De Keulenaer, J. Maebe, K. De Bosschere, and B. De Sutter, “Link-
time smart card code hardening,” International Journal of Information
Security, vol. 15, no. 2, pp. 111–130, 2016.

[31] L. Dureuil, G. Petiot, M.-L. Potet, T.-H. Le, A. Crohen, and
P. de Choudens, “Fissc: A fault injection and simulation secure col-
lection,” in Proc. of SAFECOMP. Springer, 2016, pp. 3–11.

[32] J. Proy, K. Heydemann, A. Berzati, and A. Cohen, “Compiler-assisted
loop hardening against fault attacks,” ACM Transactions on Architecture
and Code Optimization (TACO), vol. 14, no. 4, pp. 1–25, 2017.

[33] M. Rebaudengo, M. S. Reorda, and M. Violante, “A new software-based
technique for low-cost fault-tolerant application,” in Annual Reliability
and Maintainability Symposium, 2003. IEEE, 2003, pp. 25–28.

[34] Z. Alkhalifa, V. S. Nair, N. Krishnamurthy, and J. A. Abraham, “Design
and evaluation of system-level checks for on-line control flow error

detection,” IEEE Transactions on Parallel and Distributed Systems,
vol. 10, no. 6, pp. 627–641, 1999.

[35] J.-F. Lalande, K. Heydemann, and P. Berthomé, “Software countermea-
sures for control flow integrity of smart card c codes,” in Proc. of
Esorics. Springer, 2014, pp. 200–218.

[36] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Control-flow checking by
software signatures,” IEEE transactions on Reliability, vol. 51, no. 1,
pp. 111–122, 2002.

[37] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan, “The
sorcerer’s apprentice guide to fault attacks,” Proc. of the IEEE, vol. 94,
no. 2, pp. 370–382, 2006.

[38] T. Given-Wilson and A. Legay, “Formalising fault injection and coun-
termeasures,” in Proc. of ARES, 2020.

[39] K. Pattabiraman, N. Nakka, Z. Kalbarczyk, and R. Iyer, “SymPLFIED:
Symbolic program-level fault injection and error detection framework,”
in Proc. of DSN. IEEE, 2008, pp. 472–481.

[40] L. Rivière, M.-L. Potet, T.-H. Le, J. Bringer, H. Chabanne, and M. Puys,
“Combining high-level and low-level approaches to evaluate software
implementations robustness against multiple fault injection attacks,” in
Proc. of FPS. Springer, 2014, pp. 92–111.

[41] M. Berthier, J. Bringer, H. Chabanne, T.-H. Le, L. Rivière, and V. Ser-
vant, “Idea: embedded fault injection simulator on smartcard,” in Proc.
of ESSoS. Springer, 2014, pp. 222–229.

[42] N. Moro, K. Heydemann, E. Encrenaz, and B. Robisson, “Formal veri-
fication of a software countermeasure against instruction skip attacks,”
Journal of Cryptographic Engineering, vol. 4, no. 3, pp. 145–156, 2014.

[43] L. Dureuil, M.-L. Potet, P. de Choudens, C. Dumas, and J. Clédière,
“From code review to fault injection attacks: Filling the gap using fault
model inference,” in Proc. of CARDIS. Springer, 2015, pp. 107–124.

[44] T. Given-Wilson, N. Jafri, and A. Legay, “The state of fault injection
vulnerability detection,” in Proc. of VECoS, vol. 11181. Springer, 2018,
pp. 3–21.

[45] G. C. Gilley, L. Bearnson, C. Carroll, W. Bouricius, E. Hsieh, G. Putzolu,
J. Roth, P. Schneider, C. Tan, M. Hsiao et al., “International symposium
on fault-tolerant computing, digest of papers.” Pasadena, California,
March 1-3 1971.

[46] A. Avizienis, “The n-version approach to fault-tolerant software,” IEEE
Transactions on software engineering, no. 12, pp. 1491–1501, 1985.

[47] H. Eldib and C. Wang, “Synthesis of masking countermeasures against
side channel attacks,” in International Conference on Computer Aided
Verification. Springer, 2014, pp. 114–130.

[48] T. Barry, D. Couroussé, and B. Robisson, “Compilation of a counter-
measure against instruction-skip fault attacks,” in Proceedings of the
Third Workshop on Cryptography and Security in Computing Systems,
2016, pp. 1–6.

[49] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“Swift: Software implemented fault tolerance,” in International Sympo-
sium on Code Generation and Optimization. IEEE, 2005, pp. 243–254.

[50] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, and H. Hinton, “Stackguard: Automatic adaptive
detection and prevention of buffer-overflow attacks.” in USENIX security
symposium, vol. 98. San Antonio, TX, 1998, pp. 63–78.

[51] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, “Pointguard tm:
protecting pointers from buffer overflow vulnerabilities,” in Proceedings
of the 12th conference on USENIX Security Symposium-Volume 12.
USENIX Association, 2003, pp. 7–7.

[52] S. Bhatkar, D. C. DuVarney, and R. Sekar, “Address obfuscation: An
efficient approach to combat a broad range of memory error exploits.”
in USENIX Security Symposium, vol. 12, no. 2, 2003, pp. 291–301.

[53] S. Forrest, A. Somayaji, and D. H. Ackley, “Building diverse computer
systems,” in Proceedings. The Sixth Workshop on Hot Topics in Oper-
ating Systems (Cat. No. 97TB100133). IEEE, 1997, pp. 67–72.

55

Authorized licensed use limited to: b-on: Universidade de Lisboa Reitoria. Downloaded on August 28,2022 at 19:25:42 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T12:17:03-0400
	Preflight Ticket Signature

